The interaction between water protons and suitable quadrupolar nuclei (QN) can lead to quadrupole relaxation enhancement (QRE) of proton spins, provided the resonance condition between both spin transitions is fulfilled. This effect could be utilized as a frequency selective mechanism in novel, responsive T_1 shortening contrast agents (CAs) for magnetic resonance imaging (MRI). In particular, the proposed contrast mechanism depends on the applied external flux density—a property that can be exploited by special field-cycling MRI scanners. For the design of efficient CA molecules, exhibiting narrow and pronounced peaks in the proton T_1 relaxation dispersion, the nuclear quadrupole resonance (NQR) properties, as well as the spin dynamics of the system QN-1H, have to be well understood and characterized for the compounds in question. In particular, the energy-level structure of the QN is a central determinant for the static flux densities at which the contrast enhancement appears. The energy levels depend both on the QN and the electronic environment, i.e., the chemical bonding structure in the CA molecule. In this work, the NQR properties of a family of promising organometallic compounds containing 209Bi as QN have been characterized. Important factors like temperature, chemical structure, and chemical environment have been considered by NQR spectroscopy and ab initio quantum chemistry calculations. The investigated Bi-aryl compounds turned out to fulfill several crucial requirements: NQR transition frequency range applicable to clinical 1.5- and 3 T MRI systems, low temperature dependency, low toxicity, and tunability in frequency by chemical modification.

DOI: 10.1103/PhysRevX.8.021076

I. INTRODUCTION

Magnetic resonance imaging (MRI) is one of the most powerful diagnostic imaging tools in modern medicine. The technique features high spatial resolution combined with high penetration depth and superb soft tissue contrast without the use of ionizing radiation. Tissue contrast in MRI is essentially based on the distribution of water protons within the body (proton density), as well as their spin-lattice and spin-spin relaxation times (T_1, T_2). To further increase contrast and, consequently, sensitivity, signal enhancement strategies have been developed involving the use of relaxation enhancers, so-called contrast agents (CAs). The most widely used CAs are paramagnetic chelates based on gadolinium (Gd) that shorten the T_1 of free water protons [1]. In contrast, nanoparticles composed of paramagnetic iron oxides predominantly shorten T_2 [2]. These CAs are administered to patients, leading to an improved soft tissue contrast in either T_1 or T_2 weighted sequences. As a consequence, MRI is nowadays employed for both morphological and functional imaging, such as dynamic contrast enhancement (DCE) in cancer diagnostics [3]. MRI is increasingly used also in the context of cellular and molecular imaging [4], the aim of which is to provide spatially and temporally resolved maps of biomarkers, which contain information on pathophysiological
processes correlated with cancer and other diseases [5]. This is usually achieved by administration of CAs that respond to their chemical environment. Considerable effort has been directed into the development of MRI CAs exhibiting a significant change in relaxivity upon activation in response to physiological alterations such as temperature, metal ions, redox state, enzyme activity, or pH [6,7].

One representative of such responsive CAs is based on chemical exchange saturation transfer (CEST) [8–10], which has gained more and more interest in recent years. CEST contrast can be switched on and off using a selective radio frequency (RF) saturation pulse. However, CEST suffers from low sensitivity, SAR restrictions, and saturation spillover effects between bulk protons and protons of the CEST agent, which are due to insufficient frequency separation. Also, new nitroxide-based macromolecules have been reported as T_2 shortening agents [11], which provide a system free of toxic heavy metals. As they contain radicals, their in vivo lifetime may become a limiting factor, and they are not inherently switchable.

In this paper, we explore a novel alternative approach to the established CAs making use of quadrupole relaxation enhancement (QRE) [12–14] induced by the interaction of protons with quadrupolar nuclei (i.e., nuclei with spin quantum number $I > 1/2$) [15–17]. The ability of QRE to enhance MRI contrasts has been proven for the interaction between endogenous 1H and 14N in the amide groups of muscle proteins at very low flux densities [18]. However, it is completely unexplored for exogenous CAs at clinical fields, such as 1.5 or 3 T.

For QRE, the dipole-dipole (D-D) interaction between a proton spin and the nuclear spin of a quadrupolar nucleus (QN) is associated with a transfer of magnetization from the proton to the QN and, thus, accelerates the proton spin relaxation. Designing a CA based on QRE, however, is a complex task, as several conditions concerning, e.g., the 1H-QN distance and the timescale of the motional dynamics must be met for the phenomenon to take place. In particular, the process becomes effective when the proton spin transition frequency (i.e., the Larmor frequency) matches to one of the spin transition frequencies of the QN, which depend on its quadrupole coupling constant Q_{cc} and the Zeeman splitting.

QRE-based CAs are selective to B_0 due to the field dependence of this resonance condition. Moreover, Q_{cc} is sensitive to the temperature as well as the chemical surrounding of the QN and, subsequently, to subtle changes of the bonding structure, e.g., by chemical reactions. Thus, contrast can be modulated, e.g., either by altering the chemical structure of the CA or by shifting the main magnetic field B_0 of a MRI system.

Utilizing the combination of fast field cycling (FFC) relaxometry with MRI (FFC-MRI), it is possible to cycle the nominal B_0 field during an imaging sequence [18,19]. This technique gives access to contrast types arising from the field dependency of the proton relaxation rates $R_1(B_0) = 1/T_1(B_0)$ and $R_2(B_0) = 1/T_2(B_0)$, referred to as nuclear magnetic relaxation dispersion (NMRD). CAs exhibiting a strong R_1 dispersion are especially favorable to be imaged by delta relaxation enhanced magnetic resonance (dreMR) imaging [20,21], as the R_1 dispersion of healthy tissue is inherently low at clinical fields [22]. QRE is in principle capable of generating narrow peaks instead of just a smooth slope in the proton T_1-NMRD profile, so it offers the possibility to modulate contrast by cycling the field of the scanner.

The first step of the development of a potential contrast agent is the identification of promising chemical compounds that contain a suitable QN.

The basic selection criteria are

(i) high gyromagnetic ratio γ_Q to provide strong D-D coupling and hence strong QRE

(ii) high nuclear spin I, preferably $I = 9/2$, as the relaxation rate R_1 scales with I [23] and a higher nuclear spin offers more possible quadrupole transition frequencies that can fulfill the resonance condition

(iii) low toxicity

(iv) high natural abundance

(v) rich and well-known chemistry

(vi) high Q_{cc}, so that there exist transition frequencies close to the Larmor frequency at clinical field strengths (1.5 or 3 T). Q_{cc} depends on both the quadrupolar moment of the QN and the electric field gradient (EFG) produced by the electronic environment of the QN, i.e., the chemical bonding structure of the compound.

Among a number of potential QNs, 209Bi with $I = 9/2$ appears particularly favorable because it is considered to be comparatively nontoxic, and so Bi compounds are expected to have a higher biocompatibility [24] than, e.g., Gd-based CAs [25,26]. 209Bi has been suggested [27–29] also for x-ray contrast agents, which makes it an ideal candidate for dual-mode CAs for computer tomography (CT) and MRI, with only a single core element.

The knowledge of the nuclear quadrupole resonance (NQR) parameter Q_{cc} and η (the asymmetry parameter of the EFG; see Appendix A) is of central importance for fulfilling the QRE resonance condition as they determine the NQR transition spectrum. The purpose of this paper is, thus, to characterize, in terms of these parameters, a set of Bi-aryl compounds that are promising starting candidates for the development of QRE-based contrast agents. Moreover, it is pivotal to identify and, if possible, quantify all relevant mechanisms that can modify these parameters during the development cycle of the final CA.

In this context, the aim of this paper is twofold:

1. Experimental characterization of Q_{cc} and η of a promising set of quadrupolar compounds in their crystalline state by means of zero-field nuclear quadrupole resonance spectroscopy (NQRS) [30]
(see Sec. III B). As a side product, the quadrupole spin relaxation times $T_{1,Q}$ and $T_{2,Q}$ are also determined.

(2) Estimation of the influence of structural changes on Q_{cc} and η, when passing from the crystalline state to single isolated molecules in solution (it is not possible to observe NQR peaks directly in liquids [31] due to temporal averaging of the tumbling molecules). This may serve as a first approximation for the situation in the final CA and is achieved by ab initio quantum chemistry (QC) calculations (see Sec. III C).

The paper is organized as follows: First, the basic theoretical background on QRE in protons (Sec. II) is given. Then, the proposed compounds are introduced, and the results on the two main points introduced above are discussed (Sec. III). In Sec. IV, the main conclusions are summarized and, in Sec. V, a brief outlook will be given. At the end of the paper, the methods used for QC calculation and NQR spectroscopy (Sec. VI) are described in detail. Appendix A contains the mathematical description of the NQR transition frequency spectrum. Details of the data analysis and fitting procedure are given in Appendix B. In Appendix C, results and related error estimations are summarized.

II. QUADRUPOLE RELAXATION ENHANCEMENT IN PROTONS

First, it is important to recollect the basics of NQR. The interaction of a high-spin nucleus ($I > 1/2$) with the EFG generated by its surrounding charge distribution gives rise to a quantized energy level system that can be studied by NQRS [30,32,33]. The emerging NQR transition frequency spectrum $\nu_{Q,I}$ (pure quadrupole transition frequency; see Appendix A) can be fully described by Q_{cc} and η. The number of transitions depends on the nuclear spin quantum number I; in the case of 209Bi, four pure quadrupole peaks (no external field B_0) can be observed [see Fig. 1(a)]. The NQR transitions provide a very direct and highly sensitive insight into the electronic environment of the molecule where the resonant QN is located. The position of the transition frequency is sensitive to chemical or structural changes of the molecule as well as to the temperature. If the relevant influences are well understood, the transition frequency of the QN can be tuned to a desired frequency and its response upon slight chemical changes can be predicted. A more detailed mathematical deduction of the NQR transition frequency spectrum and the origin of its parameters Q_{cc} and η is given in Appendix A.

As soon as an external field B_0 is applied, QNs and protons experience a splitting of their energy level systems due to Zeeman coupling [see Fig. 1(b)]. In consequence, the degeneracy in the magnetic quantum number m_I is canceled, which leads to an observable peak at the Larmor frequency ν_L for protons as well as to a splitting of the pure NQR transition frequencies. The Zeeman contribution to the two spin ensembles depends on γ_H and γ_{QN}, respectively. For the QN, the angle Ω between its EFG and B_0 has to be considered as well (for the definition, see Appendix A). So, at particular flux densities, it is possible that spin transitions of both ensembles overlap, as indicated by the red area in Fig. 1(b). This is the primary condition for QRE.

There is, however, still another important prerequisite for QRE to occur. As illustrated in Fig. 2(a), fluctuating D-D interactions must act as a coupling mechanism, because QRE is based on a magnetization transfer from a 1H spin ensemble to a quadrupolar spin ensemble by cross relaxation [23]. Therefore, it is required that (1) the 1H-QN distance r_{H-Bi} be small enough and that (2) the spectrum of the D-D fluctuations, which can be described by the spectral density function $J(\nu)$, contain strong components at those frequencies where the resonance condition is met [compare Fig. 1(b)]. The latter condition depends on the...
timescale and model of the motional dynamics (assuming an exponentially decaying correlation time function). The first condition arises because the D-D interaction strength scales with the distance r_{HQN} between the proton and the QN as $1/r^6$. The second condition implies that the correlation time τ_C of the spin fluctuations has to be long enough to fulfill the condition $2\pi\nu_{Q,k}\tau_C > 1$.

Subsequently, we will focus on the resonance-condition for QRE, which can be written as

$$\nu_L = \nu_{0,k}(\Omega), \quad (1)$$

where $\nu_L = B_0\nu_H$ is the Larmor frequency of the protons, and $\nu_{0,k}(\Omega)$ one of the allowed transition frequencies k of the QN, which result from transitions between the energy levels of the total QN Hamiltonian:

$$H_0(I)(\Omega) = H_Q(I)(\Omega) + H_Z(I). \quad (2)$$

H_Q is the pure quadrupole Hamiltonian, H_Z is the Zeeman Hamiltonian (see Appendix A), and I is the nuclear spin of the QN, $I > \frac{1}{2}$.

According to Eq. (1), the transition crossings occur only at particular flux densities, which is one reason for the frequency selectivity of QRE. This fact is also reflected in Fig. 2(b) (which is just another viewpoint of the situation in Fig. 1), where the qualitative transition patterns of both spin ensembles are shown in dependence on B_0. The pure quadrupole transitions $\nu_{Q,k}$ form transition frequency bands $\nu_{0,k}(\Omega)$ with increasing B_0. The bands are due to the fluctuations of the angle Ω between the EFG and the external field B_0 caused by molecular rotation. For solid powders, all intensity-weighted angles have to be considered. Crossings between the proton Larmor frequency ν_L and the QN-transition bands fulfill the resonance condition and open the possibility for QRE in protons. These regions (highlighted in red) can be shifted to a desired flux density, e.g., 3 T, by tuning the pure NQR spectrum [Fig. 2(b)]. To accomplish this in a rational manner, a sound understanding of the mechanisms involved in shifting the pure NQR pattern, in particular at the human body core temperature, is of major importance for the application of QRE in MRI CAs.

For convenience, in the following sections and tables, pure NQR transitions $\nu_{Q,k}$ are labeled consecutively from transition 1 to transition 4, starting from the lowest $|1/2\rangle - |3/2\rangle$ to the highest $|7/2\rangle - |9/2\rangle$ $\Delta m_I = 1$ coherence. It is noted that, as soon as $\eta \neq 0$ or the Zeeman field points into an arbitrary direction with respect to the EFG, the states $|m\rangle$ are no longer pure Zeeman states and labeling according to m_I becomes impracticable.

A. QRE in solids and liquids

Although the description of QRE on protons given above is quite general, the aggregation state (solid or liquid) as well as the exact proton pool (intra- or intermolecular) of the considered system has to be clearly defined and distinguished. An important difference is the source of D-D fluctuations responsible for the transfer of magnetization. Whereas, in solids, the spectral density of the fluctuations may be due to bond vibrations, for solutions containing both protons and QRE-based CA particles, diffusion and rotation are the main sources [compare Fig. 2(a)]. To simulate the relaxation dynamics of QRE in the liquid state, the stochastic Liouville approach [23,34,35] is necessary, as the dynamical conditions for the Redfield theory [36,37], as used in solids, are not fulfilled anymore. Both theories necessarily require the knowledge of the NQR parameters Q_{\perp} and η. The most direct way for the determination of these parameters is zero-field NQRS in solid powders. For stochastic Liouville simulations in liquids, however, these parameters are only approximately valid, because they differ slightly [38] between free molecules in solution and molecules bound in a solid crystal. This issue will be discussed in Sec. III C.

Beyond that, the QRE strength and position depends not only on the transition frequency match, but also on several
additional parameters, such as the correlation time of the D-D fluctuations, the water exchange rate, and the relaxation behavior of the quadrupole nuclei. In the liquid state, there is no simple relationship, such as that illustrated in Figs. 1 and 2, which allows predicting QRE peaks directly from the NQR parameters, but relative changes of Q_{cc} and η are expected to lead to very similar relative shifts of the QRE peaks.

III. RESULTS AND DISCUSSION

A. Compound selection

As a group of model systems, we chose Bi-aryl compounds (in the form of crystalline powders) because of several practical reasons: Their most simple representative, triphenylbismuth, is commercially available and possesses a versatile and comparatively simple organic chemistry with the possibility of incorporating or grafting it onto nanoparticles for blood stream transportation. Moreover, at least partially complete NQR data sets are available for several Bi-aryl molecules [39], and these qualify some of them to be promising for QRE because they possess NQR transitions close to the frequencies that are required at clinical field strengths, i.e., 1.5 and 3 T.

The structures of the compounds are shown in Fig. 3 and are labeled accordingly throughout the paper. The compounds were synthesized according to established procedures (see Appendix C, Table V). In total, eight compounds including triphenylbismuth (1), 1-phenyl-2-trimethylsilyl-1-benzostilyl-1-benzobismepine, tris(4-methylphenyl) bismuth, and tris(2-6-dimethylaminophenyl) bismuth (3), tris(4-fluorophenyl) bismuth (2), tris(4-methoxyphenyl) bismuth (5), tris(2-methoxyphenyl) bismuth (4), tris(2,6-dimethoxyphenyl) bismuth (6), triphenylbismuth dichloride (7), and fully deuterated triphenylbismuth (8). For samples 5 and 7, we identified two superimposed spectra corresponding to different Bi sites in the crystal (5A, 5B and 7A, 7B, respectively).

![Image of Bi-aryl compounds and their structures](image)

FIG. 3. Overview of Bi-aryl compounds and their structures: triphenylbismuth (1), tris(4-fluorophenyl) bismuth (2), tris(4-dimethylaminophenyl) bismuth (3), tris(4-methoxyphenyl) bismuth (4), tris(2-methoxyphenyl) bismuth (5), tris(2,6-dimethoxyphenyl) bismuth (6), fully deuterated triphenylbismuth (8).

The tricoordinate Bi(III) compounds 1–6 and 8 feature a trigonal pyramidal structure around Bi with sums of angles $\Sigma C-Bi-C$ between 280° and 296°, where the phenyl rings adopt a tilted conformation with respect to the principal axis of the molecule (see Fig. 7 and Appendix C, Table V). Compound 7, triphenylbismuth dichloride, exhibits a pentacoordinate Bi(V) center, adopting a trigonal bipyramidal configuration, with Cl in apical position trans to each other, while the ipso-carbon atoms of the phenyl rings form the trigonal base and are in plane with the Bi atom. The phenyl rings are again tilted with respect to the Cl-Bi-Cl vector. Both structure types show almost perfect cylinder symmetry with respect to the pyramid’s height axis. Basic structural data as well as structure references of the Bi-aryl compounds are summarized in Appendix C, Table V.

A rather important selection criterion already at this stage of development is the potential toxicity of the presented molecules. Bismuth compounds are used in therapeutic treatment of gastrointestinal disorders, suggesting a relatively low toxic potential after oral administration [40], with Peptobismol being the most prominent example. Although there are a few known cases, where bismuth compounds showed negative side effects (e.g., bismuth subgallate and bismuth tryglycollamate [41]), in general, bismuth compounds are not considered to feature a high degree of toxicity [24]. Particularly, arylbismuth compounds with stable Bi–C bonds have not been reported to have high cytotoxic potential. For instance, triphenylbismuth (1), 1-phenyl-2-trimethylsilyl-1-benzostilyl-1-benzobismepine, tris(4-methylphenyl) bismuth, and tris[2-(methoxymethyl)phenyl] bismuth, did not show cytotoxicity at $10 \mu M$ [42]. However, establishing Bi compounds for intravenous application certainly requires further studies to assess their cytotoxicity also at higher concentrations as, e.g., used in conventional Gd-CAs (up to several mM, which corresponds to about $0.1 \text{ mmol/kg body weight}$, according to the Gadovist product monograph). Promising data in this respect can be found in a study of dextran-coated bismuth–iron oxide nanohybrid contrast agents [29]. In this publication, *in vivo* experiments on mice showed extraction of the degradation products of the CA via kidneys and urine. The experiments were carried out with a dosage of $350 \text{ mg Bi per kilogram body weight}$, i.e., more than $1.6 \text{ mmol/kg body weight}$. The investigated particles have been identified as being biocompatible and biodegradable.

B. NQR spectroscopy

From the eight different crystalline Bi-aryl powder samples introduced above, NQR parameters Q_{cc} and η, relaxation times T_{1Q} and T_{2Q}, and the linewidth of all accessible transitions were determined and are presented in Appendix C, Tables VI and VII. Every sample was characterized at 37°C; for some of them, measurements were...
also carried out at the temperature of liquid nitrogen and room temperature (RT). To our knowledge, NQR data have not yet been published for tris(4-dimethylamino) bismuth (3), tris(2-methoxyphenyl) bismuth (4), tris(4-methoxyphenyl) bismuth (5), tris(2,6-dimethoxyphenyl) bismuth (6), and deuterated triphenylbismuth (8). Literature data were confirmed for the transition frequencies determined for triphenylbismuth (1) at RT and 77 K by Robinson et al. [43] and Weaver and Robinson [44], respectively, and for triphenylbismuth dichloride (7) by Brill and Long [45] at 300 K, as well as for tris(4-fluorophenyl) bismuth (2) at 300 K by van der Kelen and Ketelaere [46].

1. NQR spectrum and target frequency

The collected data demonstrate the tuning possibilities of the quadrupole transition frequency by attaching different substituents. Figure 4 illustrates the positions of the transition frequencies of each sample measured at 37 °C (colored dots) and RT (dots in brackets), respectively. In the case that a particular transition could not be measured with the current experimental setup, its frequency was calculated using Eq. (A7) of Appendix A and plotted as a grey square. Figure 4 shows also a grey-shaded area that highlights the target frequency range for the pure NQR peaks to create a QRE peak at a flux density range defined by a hypothetical FFC-MRI scanner (e.g., a standard medical system with a nominal static flux density B_0 of 1.5 T or 2.89 T, equipped with an additional insert coil which allows for shifting the flux density by ±200 mT). Given that case, all samples have a transition within the required range (see Fig. 4). This field shift was chosen because it is technically feasible as shown by the B_0 insert coils used by Lee et al. [47] and Harris et al. [19]. Another FFC-MRI system has been reported working at a nominal flux density of 2.89 T ± 100 mT [48].

Of course, it must be kept in mind that a certain shift in transition frequency can be expected when dissolving the solid powders in a solvent or grafting them onto a nanoparticle (NP). There are two important factors influencing the Q_{cc}, namely, the structure and chemical environment of the compounds (see Sec. III C). Additionally, the D-D interaction between 209Bi and 1H nuclei, which transfers the magnetization during QRE, is modulated by the relative motion (mainly rotation) between the CA and water protons [23]. These influences can lead to frequency shifts of the QRE peaks in liquid with respect to those in solids, depending on the rotational correlation time between the two spin species. The frequency range illustrated in Fig. 4 is therefore treated only as a guideline rather than a precise decision rule for preselecting promising compounds.

2. Observed NQR parameter variation

Q_{cc} and η can be calculated from at least two experimentally determined NQR peaks using Eq. (A7) of Appendix A. When triphenylbismuth is considered as the reference system ($Q_{cc} = 668.3$ MHz at 37 °C), Q_{cc} shifts of several MHz can be observed when adding particular substituents (see Fig. 5). The strongest impact is observed when changing from three to five coordinate species [by adding two Cl atoms (QN, $I = 3/2$) directly to the Bi center], which leads to an increase in Q_{cc} by about 400 MHz. More subtle changes can be realized when incorporating substituents at different positions on the phenyl rings. Then Q_{cc} shifts from about +47 MHz (methoxy- group on the ortho position of the phenyl rings) to −11 MHz (F on the para position of the phenyl rings) can be observed. The asymmetry parameter η on the contrary changes only slightly from sample to sample and ranges between 0 and 0.1 (see Appendix C, Table VI), since the cylinder-symmetric EFG around Bi is maintained for all compounds. Compound 5 has the highest η with 0.105, whereas all compounds containing mono-methoxyphenyl do not possess any asymmetry. All associated values, including the transition

<table>
<thead>
<tr>
<th>Q_{cc}-shift (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>371.4</td>
</tr>
<tr>
<td>402.7</td>
</tr>
<tr>
<td>45.9</td>
</tr>
<tr>
<td>46.9</td>
</tr>
<tr>
<td>14.2</td>
</tr>
<tr>
<td>2.7</td>
</tr>
<tr>
<td>0.5</td>
</tr>
</tbody>
</table>

FIG. 5. Q_{cc} shifts of Bi-aryl compounds with respect to triphenylbismuth (1) at 37 °C ($Q_{cc} = 668.3$ MHz), depending on the ligand type, according to Fig. 3.
frequencies for 37 °C, as well as some measurements at 77 K, can be found in Appendix C, Table VI.

For samples 5 and 7, two superimposed 209Bi NQR spectra, labeled A and B, have been observed. This is an indication for two different crystallographic sites within the crystal. In the case of triphenylbismuth dichloride, they correspond to crystallographically independent molecules on different lattice sites A and B [49]. For compound 5, Schuster et al. [50] reported two crystallographically independent molecules in the unit cell, where one is located on a threefold crystallographic axis (space group R3), while the second one is located on a general site within the unit cell with occupancies of 0.8802:0.1198. As the full width at half maximum (FWHM) of the peaks in spectrum B is larger than in spectrum A at all transitions (see Appendix C, Table VII), we assign site B as the disordered species. Noteworthy is the slight \(Q_{cc} \) up-shift by 0.5 MHz of deuterated triphenylbismuth (8) due to an isotope effect, which is not treated closely here.

3. The influence of ligands

As the EFG at the QN due to a point charge located at distance \(r \) outside of the nucleus is proportional to \(1/r^3 \) [30,51], only charge redistributions in the closest vicinity of the nucleus are relevant for shifting the transition frequency. Roughly, two influences on the EFG inducing the observed shifts can be distinguished: First, an additional substituent on whatever site will alter the electron density distribution of the whole molecule to a stronger or lesser degree due to valence orbital forming and charge polarization. This will, however, only have a considerable impact on the quadrupolar coupling strength if these changes affect the closer surrounding of the Bi center. For ligands at the outer position of the phenyl rings, this is expected to play only a minor role. Secondly, ligands introduce a change of the whole molecular and the crystalline structure; this fact is in any case likely to have an impact on the EFG. In Fig. 6, this second influence is visualized by plotting the measured \(Q_{cc} \) values versus the average Bi–C bond length (see Appendix C, Table V) of each sample. The plot indicates a negative trend for \(Q_{cc} \) when increasing the average Bi–C distance within each molecule. Notably, tris(4-dimethylamino) bismuth (#3) is a little bit off the trend. For this set of compounds, the plot in Fig. 6 may serve as a very rough estimation of what shift can be expected as soon as the structure change is known or vice versa.

4. Temperature sensitivity

The temperature dependency of the NQR peaks was investigated by temperature-swept NQRS experiments on selected samples. The temperature interval was selected with \(+/-5^\circ C\) around the core temperature of the human body, i.e., 37 °C. For reasons of simplicity, the temperature dependency of the transition frequencies is assumed to be linear in the observed range. The strongest measured temperature coefficient is about \(-10 \text{kHz/K}\) for transition 4 of compound 1, the weakest temperature coefficient of \(-3 \text{kHz/K}\) was observed for transition 2 of compound 5A. The results are summarized in Appendix C, Table VIII. The frequency shift within \(\pm 1 \text{ °C} \) is in general lower than a typical NQR-peak width (see Appendix C, Table VII) and is therefore not expected to play a major role in the application of the compounds as CA.

5. Quadrupolar Relaxation

Though the quadrupolar relaxation rates in the solid state are not of central interest for the scope of this paper, they have been tabulated for completeness because their determination formed part of our standard experimental procedure of the NQR characterization of the compounds. For almost all NQR transitions of the presented compounds, the relaxation times \(T_{1,Q} \) and \(T_{2,Q} \) were determined at 37 °C sample temperature (see Appendix C, Table VII). This table forms a comprehensive database for deeper analysis in terms of relaxation theory, which is planned in follow-up papers. Moreover, it shows potential reasons why for some transitions the peaks could not be identified. \(T_{1,Q} \) ranges from as short as 50 \(\mu s \) for transition 4 of sample 7 to as long as 3 ms for transition 1 of sample 1. Also, for \(T_{2} \), the range is wide and spans from about 30 \(\mu s \) for sample 7, transition 4, up to 700 \(\mu s \) for sample 8, transition 4. \(T_{2,Q} \) times somewhat lower than 30 \(\mu s \) cannot be measured reliably with the current experimental setting. Thus, we conclude that some peaks could not be detected, because their \(T_{2,Q} \) time is too short. In liquid nitrogen, the relaxation times usually increase considerably, thereby facilitating the identification of rapidly dephasing peaks.

C. Quantum chemistry calculation

As 209Bi is a rather heavy element, the Bi-aryl compounds require careful considerations when performing quantum chemistry (QC) calculations of EFG tensors, especially when it comes to relativistic and electron correlation.
effects and their coupling [52–57]. In addition to the scalar relativistic (SR) effects, the influence of relativistic spin-orbit coupling (SO) needs to be taken into account in the heavy element magnetic resonance parameters [55,57,58]. While combining relativistic theory with more elaborate electron correlation treatment with hybrid functionals of the density functional theory (DFT) is currently not feasible for periodic solids, we follow closely the approach of Roukala et al. for the nuclear shielding tensor of 195Pt in molecular solids [59]. The following nomenclature is introduced to describe the calculation inputs: DFT Functional_Relativistic level_Basis Set, e.g., PBE_SO-ZORA_TZ2P, i.e., at spin-orbit coupling zeroth order regular approximation (SO-ZORA) theory using the PBE DFT functional and TZ2P basis set, and it will be used to discuss the results.

1. Q_{cc} shift from a solid crystal to the CA

Though the presented data have been gathered from solid crystalline samples, in the final application, the QRE effect will be used in CAs dispersed in liquids. These two states are expected to produce slightly different structures, as the molecules are integrated in different surroundings. The CA molecules are not embedded into a periodic crystal anymore, which causes what we call a “crystal effect” on the EFG. Also, the molecular structure itself is expected to relax (bond length and angles) in the altered surroundings, thus causing a “structure effect.” As the particular surroundings of the CA are not exactly known at present, an isolated gas-phase structure is assumed as a reasonable approximation.

To figure out the role of these effects, three different cases have been considered at the PBE_SO-ZORA_TZ2P level for the reference system sample (1) (triphenylbismuth), which are shown in Fig. 7:

(i) case 1: molecule optimized in periodic surrounding + crystalline, periodic surrounding,
(ii) case 2: molecule optimized in periodic surrounding + isolated state,
(iii) case 3: molecule in isolated state (gas phase structure) + isolated state.

![Fig. 7. Cases considered for QC calculations to estimate the crystal effect and the structure effect onto Q_{cc}](image)

The sole crystal effect makes up the difference between case 1 and 2, whereas the structure effect can be determined by taking the difference between case 2 and case 3.

Case 1 corresponds best to the experimental situation, except that the QC calculations were performed for static geometries neglecting thermal (vibrational) effects, whereas the experiment was carried out at 37°C. Even though the data in Table I indicate that periodic calculations yield a rather good agreement with experiment, the comparison of absolute values must be treated with care, as there is room for improvement in both many-electron correlation and one-electron basis set treatments.

The PBE_SO-ZORA_TZ2P results in Table I show that, for Q_{cc}, the crystal effect of $+18.2\%$ is much more important than the structure effect of -2.7% due to the geometry change of the molecule from the gas phase to the solid phase. This means that when the triphenylbismuth molecule undergoes a transition from the solid crystalline to an isolated state, a Q_{cc} shift of about -15% can be expected. The asymmetry parameters η are, in contrast to Q_{cc}, more sensitive to the change of local geometry around Bi than to, e.g., “global” crystal effects. The changes in η are, therefore, not very strong, and the quadrupole tensor is practically cylindrically symmetric ($\eta \approx 0$) in all cases.

2. QC-parameter study

The roles of different parameter improvements in QC calculations were tested in the case 2 for a single triphenylbismuth molecule. Table II shows the role of the improved QZ4P basis set, the better electronic correlation treatment with the hybrid PBE0 functional, and the impact of relativistic spin-orbit coupling effect at approximate SO-ZORA and exact two-component (X2C) relativistic theories, as well as at the fully relativistic four-component Dirac-Coulomb (DC) level of theory.

When turning from a TZ2P basis set to a QZ4P, Q_{cc} changes by $+23.95$ MHz (4%) (η by $+0.009$). This indicates that, with the lower basis set (TZ2P), the EFG has not fully converged yet, and QZ4P should be chosen if possible.

<table>
<thead>
<tr>
<th>Solid- CA comparison</th>
<th>η(1)</th>
<th>Q_{cc}(MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>0.049</td>
<td>661.1</td>
</tr>
<tr>
<td>Case 2</td>
<td>0.059</td>
<td>539.5</td>
</tr>
<tr>
<td>Case 3</td>
<td>0.001</td>
<td>557.3</td>
</tr>
<tr>
<td>Experiment crystalline solid</td>
<td>0.087</td>
<td>668.3</td>
</tr>
<tr>
<td>Crystal effect (case 1–case 2)</td>
<td>-0.010</td>
<td>121.6</td>
</tr>
<tr>
<td>Structure effect (case 2–case 3)</td>
<td>0.058</td>
<td>-17.9</td>
</tr>
</tbody>
</table>

![Table I. Comparison of QC results at the PBE_SO-ZORA_TZ2P level with experimental ones for Q_{cc} and η for triphenylbismuth in different surroundings.](image)
TABLE II. Changes of Q_{cc} and η in a single triphenylbismuth molecule (case 2, if not noted otherwise) due to a better basis set (QZ4P with respect to TZ2P), hybrid PBE0 functional and relativistic spin-orbit coupling (SO-ZORA, X2C, and DC with respect to SR-ZORA, SF-X2C, and SF-DC, respectively). Non-relativistic one- (NR) and four-component (LL) results are displayed for comparison.

<table>
<thead>
<tr>
<th>Code</th>
<th>Level of theory (see Sec. VI B)</th>
<th>η(1)</th>
<th>Q_{cc}(MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>PBE_SO-ZORA_TZ2P</td>
<td>0.059</td>
<td>539.5</td>
</tr>
<tr>
<td></td>
<td>PBE_SO-ZORA_QZ4P</td>
<td>0.069</td>
<td>563.4</td>
</tr>
<tr>
<td></td>
<td>PBE0_NR_QZ4P</td>
<td>0.049</td>
<td>590.5</td>
</tr>
<tr>
<td></td>
<td>PBE0_SR-ZORA_QZ4P</td>
<td>0.060</td>
<td>590.1</td>
</tr>
<tr>
<td></td>
<td>PBE0_SO-ZORA_QZ4P</td>
<td>0.062</td>
<td>669.8</td>
</tr>
<tr>
<td>(crystal, case2)</td>
<td>PBE0_SO-ZORA_QZ4P</td>
<td>0.000</td>
<td>687.5</td>
</tr>
<tr>
<td></td>
<td>(gas, case3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIRAC</td>
<td>PBE0_LL_RPF-4Z (cc-pVDZ)</td>
<td>0.048</td>
<td>587.9</td>
</tr>
<tr>
<td></td>
<td>PBE0_SF-DC_RPF-4Z (cc-pVDZ)</td>
<td>0.053</td>
<td>645.1</td>
</tr>
<tr>
<td></td>
<td>PBE0_DC_RPF-4Z (cc-pVDZ)</td>
<td>0.049</td>
<td>674.0</td>
</tr>
<tr>
<td></td>
<td>PBE0_SF-X2C_RPF-4Z (cc-pVDZ)</td>
<td>0.053</td>
<td>644.7</td>
</tr>
<tr>
<td></td>
<td>PBE0_X2C_RPF-4Z (cc-pVDZ)</td>
<td>0.049</td>
<td>673.2</td>
</tr>
</tbody>
</table>

A change from the pure GGA (PBE) to a hybrid DFT functional (PBE0), including 25% of the exact Hartree-Fock exchange, has a stronger influence on the Q_{cc} value by an amount of 106.4 MHz (19%) (η by −0.006). According to Teodoro and Haiduke [56], hybrid DFT functionals provide reasonable but slightly underestimated EFG values for ^{209}Bi in diatomic molecules with respect to high-level ab initio DC-CCSD results. The present magnitude increase due to PBE0 is most probably an improvement and, hence, the hybrid DFT functional is preferred for the estimation of Q_{cc}.

The rather large relativistic effect on Q_{cc}, of about +80 MHz (+14%, with respect to PBE0_NR_QZ4P) associated with the heavy ^{209}Bi isotope is well described at the best PBE0_SO-ZORA_QZ4P level, including both SR and SO relativistic effects. This is confirmed by comparing it with the results from the fully relativistic four-component Dirac-Coulomb (PBE0_DC_RPF-4Z/cc-pVDZ) and its much lighter exact two-component (PBE0_X2C_RPF-4Z/cc-pVDZ) approximation. While the ^{209}Bi basis set is presumably well converged in both cases, the small difference in η is probably due to a different basis set of the ligands (TZ2P vs cc-pVDZ).

The seemingly quite large relativistic SO effect (PBE0_SO-ZORA_QZ4P vs PBE0_SR-ZORA_QZ4P) on Q_{cc}, of about +80 MHz (+14%), is clearly overestimated by the ZORA method. The same effect at the fully relativistic DC and approximative X2C level of theory is only about +29 MHz (+4%) when compared to results with the corresponding scalar relativistic SF-DC and SF-X2C results. Actually, the SR-ZORA value for Q_{cc} is very similar with values of both nonrelativistic one- (NR) and four-component [Levy-Leblond (LL)] theories. Therefore, for ^{209}Bi in this complex, the so-called ZORA-4 scalar relativistic approximation, including a small-component density “picture-change correction” [61] used in ADF, gives a very small scalar relativistic effect on EFG. This is an example of a somewhat arbitrary division of SR and SO relativistic effects by different methods [62]. Therefore, the preferable SR approximation for EFG is obtained with the Dyall’s spin-free Hamiltonian [63] used in the SF-DC and SF-X2C calculations with DIRAC code, which provides reasonable estimation close to the fully relativistic value.

The methods of choice for the molecular modeling of Bi complexes would be PBE0_SO-ZORA_QZ4P or PBE0_X2C_RPF-4Z/cc-pVDZ combinations that provide good approximations for the fully relativistic PBE0_DC_RPF-4Z/cc-pVDZ calculation with much lower cost (e.g., X2C takes approximately a tenth of the time of the DC calculation). However, for the case study in Sec. III C1, we use PBE_SO-ZORA_TZ2P, as for the treatment of a periodic surrounding (ADF-BAND code), no higher basis set is available.

The PBE0_SO-ZORA_QZ4P calculation gives a Q_{cc} value of about −17.65 MHz (−2.6%) for the structure correction (see Table II, changes from case 3 to case 2). The same relative change was predicted at the much lighter PBE_SO-ZORA_TZ2P level (−2.7%), as seen in Table I, even though the absolute values are much smaller there. This shows that relative changes can be studied at a less advanced method and theory level as well.

IV. SUMMARY AND CONCLUSION

The experimental investigation of eight different Bi-aryl compounds by means of NQR spectroscopy is an important step towards the rational synthesis of QRE-based CAs. The acquired data represent a compendium of promising Bi compounds with their NQR parameters Q_{cc} and η, quadrupole transition frequencies, and associated relaxation times T_{1,Q} and T_{2,Q}, mainly at the medically relevant body temperature of 37°C. Depending on the type of ligand and its molecular position, frequency shifts of the quadrupole coupling constant (Q_{cc}) from −10.8 MHz up to 400 MHz with respect to triphenylbismuth (Q_{cc} = 668.3 MHz) have been observed, whereas the asymmetry parameter η stays in a range of 0 to 0.1. According to our analysis, this NQR parameter range is especially favorable for the utilization of QRE in clinical 1.5 or 3 T MRI scanners, provided they are equipped with a fast field cycling insert coil (FFC-MRI). The temperature dependence of the transition frequencies found at the human body core temperature (typically around −10 kHz/K) is not expected to affect the QRE contrast adversely. The average Bi–C bond distance of each compound, which depends on ligand type and position, has been found to be correlated with Q_{cc}; when increasing the bond distance, a decrease in Q_{cc} is observed (for a bond distance between 2.116 and
2.262 Å, Q_{cc} decreases from 1071 to 675 MHz). From these ligand induced frequency shifts, one can also think of applications for QRE enhancement in fixed field scanners: An EFG change due to chemical interactions (e.g., in the context of ligand targeting) would “tune” or “detune” the QRE peak to or from the scanner frequency, e.g., 1.5 T, thus producing contrast in the image.

As the transition frequencies cannot be expected to be exactly the same in the liquid state, it is of great interest to predict the expected discrepancies. In principle, this can be achieved by calculating the EFG modification with modern ab initio quantum chemistry (QC) methods. When modeling the transition of triphenylbismuth from a periodic molecular crystal to an isolated gas-phase molecule, our QC simulation achieved by calculating the EFG modification with modern ab initio methods.

The strong variation of the Q_{cc} shift of -18.2% due to the crystal effect and of 2.7% due to a compensating structural effect. These results suggest a possible downshift of the transition frequencies of about 15% when passing from solid to liquid.

Of course, the reliability of these findings depends on the validity of the model. In order to select the best QC settings, a parameter study has been performed. In particular, we face the problem of calculating electron distributions in the vicinity of high-mass, high-spin nuclei. It could be shown that the influence of relativistic effects, the chosen basis set, and the density functional are of great relevance; the resulting parameter set suggests PBE0_SO-ZORA_QZ4P with ADF code or PBE0_X2C_RPF-4Z/cc-pVDZ with DIRAC code. As an interesting byproduct, the generated NQRS database provides test data for the validation of EFG calculations with QC methods.

The strong variation of the $T_{1,Q}$ and $T_{2,Q}$ relaxation times for the different samples and NQR transitions point out the experimental difficulties of NQR spectroscopy: At 37°C, $T_{1,Q}$ times ranging from 3 ms down to 60 μs and $T_{2,Q}$ times from 700 μs down to 40 μs could be observed, which, on the one hand can lead to very long measurement times and, on the other hand, challenge the ring down speed of the spectrometer. In several cases, measurements at low temperature (77 K) helped to increase the signal quality due to slower $T_{2,Q}$ relaxation and an increased population difference of the spin states. The relaxation data are particularly interesting for modeling molecular dynamics and testing relaxation models for high-spin systems in the solid state, e.g., based on Redfield theory.

To summarize, the investigation of eight Bi-aryl compounds has identified them as promising candidates for use as QRE-based contrast agents. Because of their frequency selective character, the compounds may add interesting options in molecular MRI diagnostics in the future. Three of the above investigated solid samples, namely tris(2-methoxyphenyl)bismuth (5), tris(2-6-dimethoxyphenyl)bismuth (6), and triphenylbismuth dichloride (7), have already shown pronounced QRE peaks in yet unpublished proton T_1 relaxometry data at the expected frequencies. Furthermore, the comparatively low toxicity, mostly good stability against hydrolysis and versatile as well as simple chemistry, qualifies Bi-aryl compounds as fruitful research objects in the context of MRI contrast agents.

V. OUTLOOK

Though the discussion of QRE in solids is out of the scope of this paper, we would like to mention that pronounced QRE peaks have already been observed. As an example, in Fig. 8 the T_1-NMRD profile of solid, crystalline tris(2-methoxyphenyl)bismuth (5) is presented, which shows pronounced QRE peaks from inherent protons. These findings are not primarily relevant for the envisaged CAs; nevertheless, the data are highly motivating for undertaking further research in some more detail: Firstly, it can be concluded from the NMRD data in Fig. 8, as well as from theory, that the 1H-QN distance is of great importance for the D-D interaction (1/r6). An average 1H-QN distance of about 3-4 Å is estimated for the solid,.

![Image 337x167 to 557x317](image)

FIG. 8. Proton T_1-NMRD profile of the solid powder-sample (5) at 298 K obtained by a STELAR (Mede, Italy) Spinmaster relaxometer equipped with a magnet operating up to 3 T. Features A–E of the proton R_1 relaxation dispersion can be attributed unambiguously to QRE peaks superimposed on a background due to proton-proton dipolar coupling.
which can be, at best, also assumed for solution protons exchanging with the coordination sphere of paramagnetic CAs (compare Gd-CAs with about 2.5–4 Å [64]). In this context, we expect approximately the same order of magnitude as in paramagnetic CAs. The second important parameter is the water exchange rate, which is expected to increase the enhancement per QN considerably when passing from solid to liquid. So far, there are no data available about this parameter in Bi-aryl compounds, which should be investigated also for a possible NP. The third parameter is the gyromagnetic ratio of the QN, which is a lot smaller than that of the electrons in paramagnetic CAs. In this aspect, QRE CAs are clearly inferior. However, on the other hand, the relaxation enhancement seen with paramagnets is known to remain far below the maximum theoretical value because of the fast relaxation of the electrons. Here, we find a clear advantage in the QN compounds because the quadrupolar relaxation is usually much slower than that of electrons. This fourth parameter is, thus, probably essential for making QRE agents competitive.

In future QC studies, a refinement of the molecular surrounding of the CA can be considered. Furthermore, calculations to predict the EFG change of Bi-aryl compounds upon chemical modifications, i.e., different ligand types, can be envisaged. This could improve the CA-design procedure significantly by reducing the experimental workload.

VI. METHODS

A. NQR spectroscopy

By means of NQR spectroscopy, the relaxation of a nuclear spin ensemble to the equilibrium distribution can be detected using a tank circuit. The most common NQR instruments are pulse-type FFT spectrometers [32,65] that excite spin states using an RF-pulse sequence, comparable to standard NMR sequences but without exposing the sample to an external static flux density. For our investigations, we mainly use well-known sequences as, for example, spin echo (SE), free induction decay (FID), and inversion recovery (IR), using rectangular pulses together with phase cycling. Details concerning data analysis and fitting functions can be found in Appendix B, Eqs. (B1) and (B2).

Beyond characterizing QN spin systems, NQR spectroscopy has proven its scientific versatility in several applications and studies as, for example, research on molecular structure [66,67], superconductors [68], semiconductors [69], and phase transitions [70,71], as well as quantum computing [72] and the authentication of medicines [73].

Experiments were done with two pulse-type NQR spectrometers working with two complementary frequency sweep methods, both using a variety of transmit/receive coils. The self-built Graz-NQRS-MK1 [74] is particularly suitable for fast wide band sweeps up to 30-MHz bandwidth, whereas the commercially available Scout (Tecmag, Inc., USA) allows for advanced pulse sequence programming.

The probe coil is driven during transmit by a 500-W amplifier and enables π/2 pulses down to 300 ns. In combination, the two systems cover a frequency range of 20 MHz up to 150 MHz, with an available temperature range from liquid nitrogen (special cryo coils [75]) up to 50°C (dry-air flow thermostatization). The temperature is measured using a type K thermocouple close to the probe coil. For transportation, storage, and measurement, the samples are stored in glass vials of 10-mm diameter and 40-mm length in the form of a crystalline, solid powder.

B. QC CALCULATION

First, the ionic positions in a periodic crystal model were optimized at the DFT level using CASTEP [76] code and keeping lattice parameters in their experimental values of the starting geometry [77]. The PBE functional with TS dispersion correction [78] was used with ultrasoft pseudopotentials [79], a cutoff energy of 240 eV, and a Monkhorst-Pack k-point grid $4 \times 4 \times 1$ with spacing <0.03 Å$^{-1}$ between points in each direction. After optimization, all forces acting on ions were less than 0.05 eV/Å.

The EFG at the site of 209Bi of triphenylbismuth was first computed for solid state structures with the periodic ADF-BAND code of the Amsterdam Density Functional modeling suite [80–82] using the parameter-free PBE [83] DFT functional at the zeroth order regular approximation (ZORA) level of theory, including either SR (SR-ZORA) or both SR and SO effects (SO-ZORA). A more detailed study of electron correlation effects with a hybrid PBE0 [84,85] functional was then carried out for a single triphenylbismuth molecule, either in its optimized solid state or experimentally found gas phase geometry [gas electron diffraction (GED)], by Berger et al. [60]. The relativistic effects on the EFG tensor were also studied at the fully relativistic four-component Dirac-Coulomb (DC) and the exact two-component (X2C) relativistic approximation, as well as their spin-free counterparts (SF-DC and SF-X2C), with the PBE0 functional using the DIRAC [86] code.

To estimate how much the EFG of the isolated molecule is affected due to geometry changes, we performed a structure optimization with ADF code at the PBE-D3_SR-ZORA_TZ2P level starting from the experimental gas phase structure [60]. The average changes in molecular geometry (see Table V in Appendix C) due to optimization caused a 1.2% decrease of Q_{e} (550.4 MHz, $\eta = 0.001$) at the PBE_SO-ZORA_TZ2P level of theory, which is a rather small change compared to other influences (see Tables I and II).

In the ADF-BAND calculations of EFG tensors, the Slater-type basis sets designed for ZORA calculations were used from the standard ADF basis set library [87]. Both triple-ζ with two (TZ2P) and quadruple-ζ with four (QZ4P) polarization functions basis sets were employed.

In calculations with DIRAC code, Gaussian-type non-relativistic correlation-consistent polarized valence triple-ζ
The product of the EFG strength $\phi = \phi_{zz}$ and the quadrupole contribution $eQ \equiv e^2 Q/h$ is called the quadrupole coupling constant $Q_{cc} = e^2 Q/h$. The I's denote the usual spin operators.

In the principal axis system (PAS, where $\phi_{ij} = 0$ for $i \neq j$), which is a reference frame bound to the molecule, the EFG tensor operator $V^{(2)\text{PAS}}_m$ can be written as

$$V^{(2)\text{PAS}}_m = \begin{cases} \sqrt{2} \phi_{zz} \text{ for } m = 0, \\ 1/2 \phi_{zz} \text{ for } m = \pm 1, \end{cases}$$

$$V^{(2)\text{PAS}}_{m \pm 1} = 1/2 \phi_{zz} \eta = 1/2 eQ \eta. \quad (A3)$$

$\eta = [(\phi_{xx} - \phi_{yy})/(\phi_{zz})]$ is the asymmetry parameter of the EFG, ranges between 0 and 1, and is a measure for the deviation from a cylindrically symmetric ($\eta = 0$) EFG.

When applying an external flux density B_0 to the spin system, the Zeeman Hamiltonian

$$H_Z(I) = -\gamma_\text{QN} B_0 \hat{J} \quad (A4)$$

introduces an angle dependency $\Omega = (\alpha, \beta, \gamma)$ of the EFG with respect to the direction of B_0, which has to be considered when adding both quadrupolar and Zeeman interaction to the total Hamiltonian:

$$H_0(I)(\Omega) = H_Q(I)(\Omega) + H_Z(I). \quad (A5)$$

The tensor representation of $H_Q(I)$, Eq. (A1), allows rotating the quadrupole interaction by the Euler angles $\Omega = (\alpha, \beta, \gamma)$ into the main quantization axis of the total Hamiltonian, e.g., defined by B_0. The rotation from the PAS to a LAB system is performed using Wigner-D matrix elements:

$$V^{(2)\text{LAB}}_m(\Omega) = \sum_{m'=-2}^{+2} D_{mm'}(\Omega) V^{(2)\text{PAS}}_{m'} \quad (A6)$$

The result of this transformation can be found in Possa et al. [72] and in Eq. (A9).

The corresponding transition frequencies $\nu_{0,k}$ (in the case of $B_0 = 0$, the pure QNR transition frequencies $\nu_{Q,k}$) can be calculated straightforwardly by diagonalizing the total Hamiltonian $H_0(I)$ and thereby obtaining the energy levels E_α of the spin system with respect to the eigenfunctions $\{|\psi_\alpha(\Omega)\rangle\}$:

$$\nu_{0,k} = E_\alpha - E_\beta = \langle \psi_\alpha | H_0(I) | \psi_\beta \rangle - \langle \psi_\beta | H_0(I) | \psi_\alpha \rangle. \quad (A7)$$

The eigenfunctions $\{|\psi_\alpha(\Omega)\rangle\}$ can be expressed as linear combinations of the functions $|m\rangle = |I, m_I\rangle$ of the Zeeman basis with the magnetic quantum number $m_I = -I, -I + 1, \ldots, I$: $\langle \psi_\alpha(\Omega) | = \sum_{m=-I}^{I} a_{a,m}(\Omega) |m\rangle$.

In the case of 209Bi, the nuclear spin of $I = 9/2$ leads to four transitions with $\Delta m = 1$ when $B_0 = 0$, as the energy levels are doubly degenerated in m. As soon as $B_0 \neq 0$, the
energy levels and, therefore, the transition frequencies split up and form a more complex pattern. The principal behavior of the NQR pattern depending on \(B_0 \) is shown in Figs. 1(a) and 1(b). In the case of a powdered sample, an average across a spherical distribution of Euler angles can be calculated. The intensity of the spectrum in Fig. 1 is proportional to the Boltzmann population weighted transition probabilities:

\[
I(v;\Omega) = |\langle \psi_{\alpha}(\Omega)|H_{RF}|\psi_{\beta}(\Omega)\rangle|^2 \sum_{I,j} \exp\left(-\frac{E_i-E_j}{k_B T}\right)
\]

(A8)

\(H_{RF} \) is the radio frequency excitation Hamiltonian \(H_{RF} \sim \vec{I} \cdot \vec{B}_{RF} \), where \(\vec{x} \) is the direction of the transmit/receive coil generating an oscillating flux density \(B_{RF} \). \(T \) is the temperature and \(k_B \) Boltzmann’s constant.

In this work, only pure NQR transitions (no \(B_0 \) field) of powder samples are presented where the EFG is chosen to be in the PAS (\(\alpha = \beta = \gamma = 0 \)). \(Q_{ie} \) and \(\eta \) can be calculated numerically from two experimentally derived transition frequencies using Eq. (A7).

Performing the transformation according to Eq. (A6), the irreducible tensor operator elements have the form

\[
\begin{align*}
V_{00}^{(2)\text{LAB}} &= \frac{1}{2} \left[\frac{(3\cos^2\beta - 1)}{2} + \frac{\eta}{4} \sin^2\beta (e^{2i\gamma} + e^{-2i\gamma}) \right] \\
V_{0\pm 1}^{(2)\text{LAB}} &= \frac{1}{2} \left[\mp \frac{\sqrt{3}}{6} \sin 2\beta e^{\pm i\alpha} + \frac{\eta}{\sqrt{6}} \left(-\frac{1}{2} \cos \beta + \sin \beta e^{\pm i(\alpha \pm 2\beta)} + \frac{1}{2} \cos \beta \sin \beta e^{i(\alpha + 2\beta)} \right) \right] \\
V_{\pm 2}^{(2)\text{LAB}} &= \frac{1}{2} \left[\mp \frac{\sqrt{3}}{6} \sin^2 2\beta e^{\pm 2i\alpha} + \frac{\eta}{\sqrt{6}} \left((1 + \cos \beta)^2 e^{\pm 2i(\alpha + \beta)} + (1 + \cos \beta)^2 \frac{1}{4} e^{2i(\alpha + \beta)} \right) \right].
\end{align*}
\]

(A9)

The matrix representation of Eq. (A1) in the Zeeman basis \(\{|I, m_I\}\) where \(V_{mI}^{(2)\text{LAB}}(\Omega) \) has to be included from Eq. (A9), looks like

\[
H_Q = \begin{pmatrix}
\frac{Q_{ix}}{2} & \frac{Q_{iy}}{2} & \frac{Q_{iz}}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{Q_{iy}}{2} & \frac{Q_{ix}}{2} & \frac{Q_{iz}}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{Q_{iz}}{2} & \frac{Q_{iy}}{2} & \frac{Q_{ix}}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} \sqrt{3} Q_{ix} V_{p1} & -\frac{1}{2} \sqrt{3} Q_{iy} V_{p1} & -\frac{Q_{iy} V_{ix}}{2} & \frac{Q_{iy} V_{ix}}{2} & \frac{5 Q_{iy} V_{ix}}{2} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} \sqrt{3} Q_{iy} V_{p2} & -\frac{Q_{ix} V_{iy}}{2} & \frac{Q_{ix} V_{iy}}{2} & 0 & \frac{5 Q_{ix} V_{iy}}{2} & 0 & 0 \\
0 & 0 & 0 & \frac{5 Q_{ix} V_{ix}}{2} & 0 & -\frac{Q_{iy} V_{ix}}{4} & \frac{Q_{iy} V_{ix}}{4} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{5 Q_{ix} V_{ix}}{2} & -\frac{Q_{ix} V_{iy}}{4} & \frac{Q_{ix} V_{iy}}{4} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{5 Q_{ix} V_{ix}}{2} & 0 & \frac{5 Q_{ix} V_{ix}}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{5 Q_{ix} V_{ix}}{2} & 0 & \frac{5 Q_{ix} V_{ix}}{2} \\
\end{pmatrix}
\]

(A10)

APPENDIX B: DATA ANALYSIS AND FITTING PROCEDURE

The spin-lattice (\(T_1;\Omega \)) and spin-spin (\(T_2;\Omega \)) relaxation times of all found transition peaks were experimentally determined using inversion recovery (IR) and spin echo (SE) sequences with variable inversion time \(T_1 \) and echo time \(T_2 \), respectively (for phase cycling, see Table III).

<table>
<thead>
<tr>
<th>(\pi) (only for IR)</th>
<th>117°</th>
<th>117°</th>
<th>117°</th>
<th>117°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi/2)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>(\pi)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RX</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table III. Phase of pulses for SE and IR.
The data were analyzed using the standard fitting procedure of the usual, well-known models [91]:

\[
M_{IR}(T_I) = M_0 \left[1 - 2 \cdot \exp \left(-\frac{T_I}{T_{1,Q}} \right) \right] + B. \quad (B1)
\]

\[
M_{SE}(T_E) = M_0 \exp \left(-\frac{T_E}{T_{2,Q}} \right) + B. \quad (B2)
\]

To fit the peak shape, a Lorentzian shape is assumed, which holds true for monoexponential decays:

\[
L(\nu) = \frac{I}{1 + \left(\frac{\nu - \nu_c}{\gamma} \right)^2} + B
\]

FWHM = 2\gamma. \quad (B3)

An example of the application of the models is given in Fig. 9 and Table IV for tris(4-methoxyphenyl) bismuth (4), transition 2, at 310 K: \(T_{1,Q} = 958 \mu s\), \(T_{2,Q} = 369 \mu s\), \(\nu_c = 56.88 \text{ kHz}\), FWHM = 51 kHz, stepsize \(\Delta T_E = 4 \mu s\), and \(\Delta T_I = 10 \mu s\).

The temperature dependency of the transition frequency is assumed to be linear in the range of several degrees (\(\Delta T = -5 ^\circ C\)) around the target temperature of 310 K (37 ^\circ C). The linear temperature coefficient \(C_{37}\) is determined by measuring the transition frequency \(\nu_{Q,k}\) for several sample temperatures:

\[
\nu_{Q,k}(T) = C_{37} \Delta T + \nu_{37}. \quad (B4)
\]

Raw data and fitting parameters for each measurement are available anytime in detail on request.

APPENDIX C: EXPERIMENTAL DATA AND ERROR ESTIMATION

TABLE IV. Example for fitting result of Fig. 9, including result and standard error according to Eqs. (B1), (B2), and (B3).

<table>
<thead>
<tr>
<th>IR</th>
<th>(M_0) (arb.units)</th>
<th>(T_{1,Q}) ((\mu s))</th>
<th>(B) (arb.units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>7.8286 \times 10^{-1}</td>
<td>958.3</td>
<td>1.4471 \times 10^{-1}</td>
</tr>
<tr>
<td>Std.error</td>
<td>0.027 \times 10^{-1}</td>
<td>7.8</td>
<td>0.0371 \times 10^{-1}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SE</th>
<th>(M_0) (arb.units)</th>
<th>(T_{2,Q}) ((\mu s))</th>
<th>(B) (arb.units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>9.5343 \times 10^{-1}</td>
<td>368.6</td>
<td>3.346 \times 10^{-2}</td>
</tr>
<tr>
<td>Std.error</td>
<td>0.0295 \times 10^{-1}</td>
<td>2.5</td>
<td>0.136 \times 10^{-2}</td>
</tr>
</tbody>
</table>

\[
L(\nu) = \frac{I}{1 + \left(\frac{\nu - \nu_c}{\gamma} \right)^2} + B
\]

FWHM = 2\gamma. \quad (B3)

An example of the application of the models is given in Fig. 9 and Table IV for tris(4-methoxyphenyl) bismuth (4), transition 2, at 310 K: \(T_{1,Q} = 958 \mu s\), \(T_{2,Q} = 369 \mu s\), \(\nu_c = 56.88 \text{ kHz}\), FWHM = 51 kHz, stepsize \(\Delta T_E = 4 \mu s\), and \(\Delta T_I = 10 \mu s\).

The temperature dependency of the transition frequency is assumed to be linear in the range of several degrees (\(\Delta T = -5 ^\circ C\)) around the target temperature of 310 K (37 ^\circ C). The linear temperature coefficient \(C_{37}\) is determined by measuring the transition frequency \(\nu_{Q,k}\) for several sample temperatures:

\[
\nu_{Q,k}(T) = C_{37} \Delta T + \nu_{37}. \quad (B4)
\]

Raw data and fitting parameters for each measurement are available anytime in detail on request.

TABLE V. Sample overview; crystal structures, structure info, references and source.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Sample name</th>
<th>Crystal structure</th>
<th>Average Bi–C distance ((\AA))</th>
<th>Sum of angles C–Bi–C (°)</th>
<th>Structure reference</th>
<th>Hydrolytic stability</th>
<th>Synth. reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Triphenylbismuth</td>
<td>Monoclinic C2/c</td>
<td>2.260</td>
<td>281.68</td>
<td>[77]</td>
<td>Yes</td>
<td>[92–94]</td>
</tr>
<tr>
<td>2</td>
<td>Tris(4-fluorophenyl) bismuth</td>
<td>Monoclinic P2(1)/c</td>
<td>2.262</td>
<td>285.38</td>
<td>Not available</td>
<td>Yes</td>
<td>[94]</td>
</tr>
<tr>
<td>3</td>
<td>Tris(4-dimethylamino) bismuth</td>
<td>Triclinic, P-1</td>
<td>2.242</td>
<td>283.04</td>
<td>[95]</td>
<td>Yes</td>
<td>[96]</td>
</tr>
<tr>
<td>4</td>
<td>Tris(4-methoxyphenyl) bismuth</td>
<td>Trigonal, R-3</td>
<td>2.252</td>
<td>281.37</td>
<td>[94]</td>
<td>Yes</td>
<td>[94]</td>
</tr>
</tbody>
</table>

(Table continued)
TABLE V. (Continued)

<table>
<thead>
<tr>
<th>Nr</th>
<th>Sample name</th>
<th>Crystal structure</th>
<th>Average Bi–C distance (Å)</th>
<th>Sum of angles C-Bi-C (°)</th>
<th>Structure reference</th>
<th>Hydrolytic stability</th>
<th>Synth. reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>5A</td>
<td>Tris(2-methoxyphenyl)bismuth, site A</td>
<td>Rhombohedral R3</td>
<td>2.248</td>
<td>282.62/277.4</td>
<td>[50,97]</td>
<td>Yes</td>
<td>[98]</td>
</tr>
<tr>
<td>5B</td>
<td>Tris(2-methoxyphenyl)bismuth, site B</td>
<td>Disordered</td>
<td>Not available</td>
<td>Not available</td>
<td>[50]</td>
<td>Yes</td>
<td>[98]</td>
</tr>
<tr>
<td>6</td>
<td>Tris(2,6-dimethoxyphenyl)bismuth</td>
<td>Monoclinic P21/c</td>
<td>2.262</td>
<td>296.8</td>
<td>[99]</td>
<td>Yes</td>
<td>[98]</td>
</tr>
<tr>
<td>7A</td>
<td>Triphenylbismuth dichloride, site A</td>
<td>Orthorhombic P2(1)2(1)2(1)</td>
<td>2.129</td>
<td>Not available</td>
<td>[49]</td>
<td>No</td>
<td>[93,100]</td>
</tr>
<tr>
<td>7B</td>
<td>Triphenylbismuth dichloride, site B</td>
<td>Orthorhombic P2(1)2(1)2(1)</td>
<td>2.116</td>
<td>...</td>
<td>[49]</td>
<td>No</td>
<td>[93,100]</td>
</tr>
<tr>
<td>8</td>
<td>Triphenylbismuth deuterated</td>
<td>Monoclinic C2/c</td>
<td>See Nr.1</td>
<td>See Nr.1</td>
<td>Not available</td>
<td>Yes</td>
<td>Not available</td>
</tr>
<tr>
<td></td>
<td>Not available</td>
<td>Triphenylbismuth, gas phase</td>
<td>Not available</td>
<td>2.263</td>
<td>284.13</td>
<td>[60], GED structure</td>
<td>Not available</td>
</tr>
<tr>
<td></td>
<td>Not available</td>
<td>Triphenylbismuth, ADF optimized, gas phase</td>
<td>Not available</td>
<td>2.279</td>
<td>282.08</td>
<td>Not available</td>
<td>Not available</td>
</tr>
<tr>
<td></td>
<td>Not available</td>
<td>Triphenylbismuth, CASTEP optimized, periodic</td>
<td>Not available</td>
<td>2.291</td>
<td>282.62</td>
<td>Not available</td>
<td>Not available</td>
</tr>
</tbody>
</table>

TABLE VI. Measured NQR transition frequencies $\nu_{Q,k}$ and derived NQR parameter Q_{cc} and η at different temperatures (310 K, 300 K, and 77 K) for eight Bi-aryl compounds.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Sample name</th>
<th>Temp. (K)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Q_{cc} (MHz)b</th>
<th>η (1)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Triphenylbismuth</td>
<td>310</td>
<td>29.67</td>
<td>55.14</td>
<td>83.42</td>
<td>111.32</td>
<td>668.3</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>29.76</td>
<td>55.21</td>
<td>83.50</td>
<td>111.42</td>
<td>668.9</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td></td>
<td>77</td>
<td>30.60</td>
<td>56.45</td>
<td>85.45</td>
<td>114.03</td>
<td>684.6</td>
<td>0.090</td>
</tr>
<tr>
<td>2</td>
<td>Tris(4-fluorophenyl) bismuth</td>
<td>310</td>
<td>28.60</td>
<td>54.51</td>
<td>82.11</td>
<td>109.54</td>
<td>657.5</td>
<td>0.071</td>
</tr>
<tr>
<td></td>
<td></td>
<td>77</td>
<td>28.65</td>
<td>55.86</td>
<td>84.02</td>
<td>112.06</td>
<td>672.5</td>
<td>0.053</td>
</tr>
<tr>
<td>3</td>
<td>Tris(4- dimethylamino) bismuth</td>
<td>310</td>
<td>28.34</td>
<td>54.94</td>
<td>82.52</td>
<td>110.66</td>
<td>660.6</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td></td>
<td>77</td>
<td>28.23</td>
<td>56.20</td>
<td>84.35</td>
<td>112.47</td>
<td>674.8</td>
<td>0.020</td>
</tr>
<tr>
<td>4</td>
<td>Tris(4-methoxyphenyl) bismuth</td>
<td>310</td>
<td>28.49</td>
<td>56.88</td>
<td>85.34</td>
<td>113.77</td>
<td>682.5</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>77</td>
<td>29.17</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>5A</td>
<td>Tris(2-methoxyphenyl) bismuth site A</td>
<td>310</td>
<td>(29.82)</td>
<td>59.64</td>
<td>89.47</td>
<td>119.27</td>
<td>715.2</td>
<td>0.000</td>
</tr>
<tr>
<td>5B</td>
<td>Tris(2-methoxyphenyl) bismuth site B</td>
<td>310</td>
<td>29.76</td>
<td>59.45</td>
<td>89.29</td>
<td>119.06</td>
<td>714.3</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>Tris(2,6-dimethoxyphenyl) bismuth</td>
<td>310</td>
<td>30.14</td>
<td>54.40</td>
<td>82.45</td>
<td>110.06</td>
<td>669.9</td>
<td>0.105</td>
</tr>
<tr>
<td>7A</td>
<td>Triphenylbismuth dichloride site A</td>
<td>310</td>
<td>(44.14)</td>
<td>86.40</td>
<td>129.91</td>
<td>173.30</td>
<td>1039.7</td>
<td>0.046</td>
</tr>
<tr>
<td>7B</td>
<td>Triphenylbismuth dichloride site B</td>
<td>310</td>
<td>(44.81)</td>
<td>89.20</td>
<td>133.86</td>
<td>178.50</td>
<td>1071.0</td>
<td>0.020</td>
</tr>
<tr>
<td>8</td>
<td>Triphenylbismuth deuterated</td>
<td>310</td>
<td>29.68</td>
<td>55.20</td>
<td>83.49</td>
<td>111.40</td>
<td>668.8</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>29.82</td>
<td>55.25</td>
<td>83.58</td>
<td>111.56</td>
<td>669.9</td>
<td>0.098</td>
</tr>
</tbody>
</table>

n/a, not available; red, italic values indicate values that have been theoretically predicted and have not been measured yet; values in brackets have larger errors.

$^{a}\Delta\nu_{Q,k} = +/- 10$ kHz (310 K), $\Delta\nu_{Q,k} = +/- 30$ kHz (300 K and 310 K in brackets), $\Delta\nu_{Q,k} = +/- 5$ kHz (77 K)

$^{b}\Delta Q_{cc} = +/- 0.4$ MHz (310 K), $\Delta Q_{cc} = +/- 0.6$ MHz (300 K and 310 K in brackets), $\Delta Q_{cc} = +/- 0.2$ MHz (77 K)

$^{c}\Delta \eta = +/- 0.001$ (310 K), $\Delta \eta = +/- 0.004$ (300 K and 310 K in brackets), $\Delta \eta = +/- 0.001$ (77 K)
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Sample name</th>
<th>Transition Temperature (K)</th>
<th>$T_1;Q$ (μs)a</th>
<th>$T_2;Q$ (μs)a</th>
<th>FWHM (kHz)d</th>
<th>$\nu_{Q;k}$ (MHz)e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Triphenylbismuth</td>
<td>2</td>
<td>310</td>
<td>1123</td>
<td>277</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>310</td>
<td>548</td>
<td>438</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>310</td>
<td>835</td>
<td>486</td>
<td>111.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>300</td>
<td>2915</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>300</td>
<td>1547</td>
<td>222</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>300</td>
<td>820</td>
<td>396</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>300</td>
<td>966</td>
<td>434</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>77</td>
<td>63738</td>
<td>102</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>77</td>
<td>180000</td>
<td>394</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>77</td>
<td>164000</td>
<td>802</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>77</td>
<td>17029</td>
<td>822</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Tris(4-fluorophenyl) bismuth</td>
<td>2</td>
<td>310</td>
<td>201</td>
<td>81</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>310</td>
<td>91</td>
<td>66</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>310</td>
<td>89</td>
<td>83</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>77</td>
<td>11182</td>
<td>48</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>77</td>
<td>2930</td>
<td>450</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>77</td>
<td>2322</td>
<td>581</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>77</td>
<td>1754</td>
<td>546</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Tris(4- dimethylamino) bismuth</td>
<td>2</td>
<td>310</td>
<td>238</td>
<td>109</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>310</td>
<td>193</td>
<td>108</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>310</td>
<td>231</td>
<td>115</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>77</td>
<td>2600</td>
<td>360</td>
<td>Poor fit</td>
</tr>
<tr>
<td>4</td>
<td>Tris(4-methoxyphenyl) bismuth</td>
<td>2</td>
<td>310</td>
<td>2897</td>
<td>51</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>310</td>
<td>958</td>
<td>369</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>310</td>
<td>768</td>
<td>245</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>77</td>
<td>872</td>
<td>294</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>77</td>
<td>426</td>
<td>315</td>
<td>41</td>
</tr>
<tr>
<td>5A</td>
<td>Tris(2-methoxyphenyl) bismuth</td>
<td>1</td>
<td>(310)</td>
<td>1261</td>
<td>57</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Site A</td>
<td>2</td>
<td>310</td>
<td>570</td>
<td>370</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>310</td>
<td>334</td>
<td>284</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>310</td>
<td>426</td>
<td>315</td>
<td>41</td>
</tr>
<tr>
<td>5B</td>
<td>Tris(2-methoxyphenyl) bismuth</td>
<td>2</td>
<td>310</td>
<td>64</td>
<td>58</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Site B</td>
<td>3</td>
<td>310</td>
<td>64</td>
<td>51</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>310</td>
<td>61</td>
<td>67</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>Tris(2-6-dimethoxyphenyl) bismuth</td>
<td>2</td>
<td>310</td>
<td>122</td>
<td>69</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>310</td>
<td>50</td>
<td>51</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>310</td>
<td>78</td>
<td>56</td>
<td>14</td>
</tr>
<tr>
<td>7A</td>
<td>Triphenylbismuth dichloride</td>
<td>1</td>
<td>(310)</td>
<td>98</td>
<td>52</td>
<td>Poor fit</td>
</tr>
<tr>
<td></td>
<td>Site A</td>
<td>2</td>
<td>310</td>
<td>63</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>310</td>
<td>46</td>
<td>44</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>77</td>
<td>940</td>
<td>310</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>77</td>
<td>1846</td>
<td>90</td>
<td>16</td>
</tr>
<tr>
<td>7B</td>
<td>Triphenylbismuth dichloride</td>
<td>1</td>
<td>(310)</td>
<td>241</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Site B</td>
<td>2</td>
<td>310</td>
<td>108</td>
<td>46</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>310</td>
<td>54</td>
<td>28</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>77</td>
<td>985</td>
<td>69</td>
<td>Poor fit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>77</td>
<td>397</td>
<td>311</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>Triphenylbismuth deuterated</td>
<td>1</td>
<td>300</td>
<td>2381</td>
<td>418</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>300</td>
<td>1472</td>
<td>525</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>300</td>
<td>909</td>
<td>636</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>300</td>
<td>1049</td>
<td>693</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>310</td>
<td>1104</td>
<td>621</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>310</td>
<td>646</td>
<td>629</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>310</td>
<td>725</td>
<td>712</td>
<td>15</td>
</tr>
</tbody>
</table>

n/a, not available; “poor fit”: due to poor frequency resolution, temperatures in brackets have higher uncertainty

atemperature accuracy: 0.5 K

bat 300 K/310 K: For $T_2;Q > 200 \mu s$, $\Delta T_1;Q < 12\%$, $\Delta T_2;Q < 12\%$

For $T_2;Q < 200 \mu s$, $\Delta T_1;Q < 22\%$, $\Delta T_2;Q < 22\%$

cat 77 K: For $T_2;Q > 200 \mu s$, $\Delta T_1;Q < 7\%$, $\Delta T_2;Q < 7\%$

For $T_2;Q < 200 \mu s$, $\Delta T_1;Q < 12\%$, $\Delta T_2;Q < 12\%$

dFWHM: $+/1$ kHz, due to fitting, see Table IV

e$\Delta\nu_{Q;k}$ at 310 K = $+/10$ kHz, $\Delta\nu_{Q;k}$ at (310 K) = $+/30$ kHz, $\Delta\nu_{Q;k}$ at 300 K = $+/30$ kHz
A general error estimation to the data in Table VI and Table VII is given as follows.

Temperature accuracy:

- 0.1 K (accuracy of temperature controller)
- 0.5 K [experimental accuracy due to drift and offset (thermocouple position)]

NQR parameter:

- At 310 K: \(\Delta \nu_{Q,k} = +/−10 \text{ kHz} \) (due to temperature stability during 1 h measurement)
- \(\Delta Q_{cc} = +/−0.4 \text{ MHz} \) (calculation variation within transition frequency limits)
- \(\Delta \eta = +/−0.001 \) (calculation variation within transition frequency limits)

At 300 K, at (310 K):

- \(\Delta \nu_{Q,k} = +/−30 \text{ kHz} \) (extended sample-thermocouple distance)
- \(\Delta Q_{cc} = +/−0.6 \text{ MHz} \) (calculation variation within transition frequency limits)
- \(\Delta \eta = +/−0.003 \) (calculation variation within transition frequency limits)

At 77 K:

- \(\Delta \nu_{Q,k} = +/−5 \text{ kHz} \) (spectrometer accuracy)
- \(\Delta Q_{cc} = +/−0.2 \text{ MHz} \) (calculation variation within transition frequency limits)
- \(\Delta \eta = +/−0.001 \) (calculation variation within transition frequency limits)

Linear temperature coefficient \(C_{37} \):

- \(+/−0.2 \text{ kHz/K} \) (due to average deviation in 95% confidence bound)

Relaxation times:

- Statistical fitting error:
 - \(\Delta T_{1,Q} = +/−2\% \) standard error (due to average deviation in 95% confidence bound)
 - \(\Delta T_{2,Q} = +/−2\% \) standard error (due to average deviation in 95% confidence bound)

- Systematic error: (mainly due to temperature drift during the experiment and estimated from repeated \(T_2 \) and \(T_1 \) determination on a single transition, higher errors for low \(T_2 \) measurements due to low SNR)

At 300 K/310 K:

- For \(T_2 > 200 \mu s \), \(\Delta T_{1,Q} < 10\% \), \(\Delta T_{2,Q} < 10\% \)
- For \(T_2 < 200 \mu s \), \(\Delta T_{1,Q} < 20\% \), \(\Delta T_{2,Q} < 20\% \)

At 77 K:

- For \(T_2 > 200 \mu s \), \(\Delta T_{1,Q} < 5\% \), \(\Delta T_{2,Q} < 5\% \)
- For \(T_2 < 200 \mu s \), \(\Delta T_{1,Q} < 10\% \), \(\Delta T_{2,Q} < 10\% \)

[70] N. Sinyavsky, E. Korotey, and M. Maćkowiak, *Determination of the Electric Field Gradient Asymmetry from

A. Hassan, S. R. Breeze, S. Courtenay, C. Deslippe, and S. Wang, Organobismuth(III) and Organobismuth (V) Complexes Containing Pyridyl and Amino Functional Groups. Syntheses and Characterizations of BiIIIAr3 (Ar = p-C6H4(NMe2)2, p-C6H4CH2(NPri)2, p-C6H4(CH2N(2-Py))2), BiIIIAr2L2, [BiIIIAr4][PF6], and [BiIIIAr3][Ag2Cl4] (Ar = p-C6H4(NMe2) or p-C6H4CH2N(2-Py))2, L = Cl, CH3CO2, CF3CO2), Organometallics 15, 5613 (1996).

