Metamaterials are the artificial structures assembled with subwavelength building blocks featuring some physical properties that do not exist in the natural world [1,2]. Over the past decade, developments in this area have been characterized by the realization of numerous novel optical properties, such as negative refractive indices [3–5], superlenses [6–8], etc. A two-dimensional metamaterial offers the possibility of controlling light with miniaturized devices, which are essential, especially for integrated photonics [9,10]. Furthermore, by engineering the phase discontinuity on an interface, one can fully steer light and accomplish unparalleled control of anomalous reflection and refraction [11–15] and realize different optical devices, such as optical vortex plates [11,16] and wave plates [17]. It has been well established that upon illumination of incident light, oscillating electric current can be excited on a metallic surface. The surrounding electromagnetic field is then modulated by the irradiation of oscillating surface electric current. At resonant frequency, this effect is so significant that a thin layer of metallic structure can effectively tune the state of light. However, the underlying Lorentz resonance in metal is highly dispersive in nature, which limits its application to a specific narrow wave band. Overcoming the dispersion of metamaterials is essential for wide optical applications. On the other hand, it is known that the dielectric material interacts with light by accumulating an optical path within a certain thickness. This feature is effective over a broad bandwidth and has already been applied in antireflection coating and other optical devices [18–20]. By integrating a metallic metastructure and a dielectric interlayer, it is possible to realize a dispersion-free broadband device on the subwavelength scale, where the strong response of the metallic structures helps to decrease the device size while the dielectric interlayer helps to eliminate the dispersion simultaneously in both the amplitude and the phase difference of the reflected or transmitted light.

Thus far, much effort has been devoted to broaden the response frequency range of metallic metastructures [20–33]. For example, by superimposing different resonance modes within a unit cell, the bandwidth of the structure can be broadened [25–30]. Additionally, ultrathin, broadband, and highly efficient metamaterial-based terahertz polarization converters have been realized recently, which rotate a linear polarization state into its orthogonal one [20]. Furthermore, a broadband quarter-wave plate constructed with a periodic arrangement of metallic nanobricks above a homogeneous metallic film separated by an insulator layer has also been numerically demonstrated based on gap-plasmon resonators [33]. It is always interesting to identify the essential physics mechanism of these broadband designs. In this paper, we illustrate a general mechanism for manipulating the dispersion of a metastructure by integrating a metallic metamaterial, which possesses a strong yet dispersive interaction with light, with a dielectric interlayer, which has accumulative yet broadband interaction with light. In this way, the intrinsic dispersion of the metallic structures is perfectly cancelled out by the thickness-dependent dispersion of the dielectric spacing layer. As examples to apply this concept, a broadband quarter-wave plate and a half-wave plate are demonstrated. By proper selection of structural parameters,
the polarization state of light can be freely tuned across a broad frequency range, and all of the polarization states on the Poincaré sphere can be realized dispersion free. In particular, the approach described here can be applied in designing other devices with dispersion-free features.

Our structure consists of a layer of metallic metastructure and a layer of perfect electric conductor (PEC) separated by a dielectric layer with thickness d. (Here, we take this layer as a vacuum in order to keep the formula simple. The details for the dielectric layer are provided in the Supplemental Material [34]). The response of each layer upon illumination of incident light $\tilde{E}_{\text{inc}}e^{-ikz}$ is schematically shown in Fig. 1(a). For the metallic pattern without magnetic response [35], the irradiation can be expressed as $\tilde{E}_{\text{rad}}e^{-ik(z-d)}$ and $\tilde{E}_{\text{rad}}e^{ik(z-d)}$ for the waves propagating in $-z$ and $+z$ directions, respectively. The PEC layer acts as a perfect mirror. Therefore, the light reflected from the PEC plane can be regarded as the mirror image of the incident light together with the radiation of the mirror image of the metallic structure, as illustrated by the red arrows in Fig. 1(a). The mirror image of the incident light is expressed as $-\tilde{E}_{\text{inc}}e^{ikz}$. The mirror image of the metallic structure is located at $z = -d$ and its irradiation is expressed as two waves propagating in $-z$ and $+z$ directions, respectively, $-\tilde{E}_{\text{rad}}e^{-ik(z+d)}$ and $-\tilde{E}_{\text{rad}}e^{ik(z+d)}$. It follows that the total reflection is the superposition of all components of light propagating in the $+z$ direction,

$$\tilde{E}_{\text{ref}} = -\tilde{E}_{\text{inc}} + \tilde{E}_{\text{rad}}(-e^{ikd} + e^{-ikd}).$$

\[\text{(1)}\]

Here we have ignored the common factor e^{ikz} on both sides of Eq. (1). It should be pointed out that both \tilde{E}_{rad} and \tilde{E}_{inc} are the vectors and their polarizations are not necessarily identical. Therefore, the polarization of the reflected light can be different from that of the incident light. Because of the resonance nature of the metallic structure, \tilde{E}_{rad} is frequency dependent. The term $-e^{ikd} + e^{-ikd}$ reflects the conjugation relation between the radiation from the L-patterned layer and its mirror image. As the wave vector k is proportional to frequency, $-e^{ikd} + e^{-ikd}$ is frequency dependent as well. However, at the same time, the dispersion of $-e^{ikd} + e^{-ikd}$ depends on the separation d. By carefully selecting d, the dispersion of $-e^{ikd} + e^{-ikd}$ can compensate the dispersion of \tilde{E}_{rad}. In this way, the dispersion-free feature is achieved [36].

To implement this idea, an array of gold L patterns, which is one of the simplest anisotropy resonators, is designed over a homogeneous, highly reflective silver mirror layer separated by a layer of SiO$_2$, as shown in Fig. 1(b). Commercial software based on the finite-difference time-domain method is applied to simulate the response of the structure upon illumination of light (the details are provided in the Supplemental Material [34]). Before looking into the structure shown in Figs. 1(a) and 1(b), for comparison, it is interesting to investigate the transmittance of an independent array of L patterns without the mirror layer. When the incident light is polarized along 45° or 135°, due to the symmetry of the structure, the polarization of the transmitted and the reflected light does not change. The normalized electric components of the transmitted light are shown in Fig. 1(c).

The symmetric resonance mode and the antisymmetric resonance mode are excited by the 45° and 135° polarized light at the higher and lower frequencies, respectively, which has been reported [11]. Apparently, the bare L-patterned layer acts as a highly dispersive anisotropy
resonator. When a homogeneous silver mirror layer is introduced beneath the structure at \(z = 0 \), the transmission of the structure is zero. The simulated total reflectance \(R_{\text{tot}} \) is shown in the inset of Fig. 1(d), where \(R_{\text{tot}} \) is about 90\%, indicating that the structure is an excellent reflector. The subscript in \(R_{\text{tot}} \) represents the polarization of incident light. The amplitude ratio between the two components of the reflected light with both \(x \)- and \(y \)-polarized incidence are calculated [Fig. 1(d)]. \(r_{ij} \) stands for the complex amplitude of the \(i \) component of the reflected light induced by \(j \)-polarized incidence (\(i, j = x, y \)). The phase difference \(\Delta \phi_{ij} \) is defined as the difference between the phase of the \(y \) component and that of the \(x \) component of the reflected light, with the subscript of \(\Delta \phi_{ij} \) standing for the polarization of incident light. For the \(x \)-polarized incidence, in a broad frequency band ranging from 87 to 117 THz, the amplitude ratio remains unity and the phase difference \(\Delta \phi_x \) is \(-90^\circ\) for \(y \)-polarized incidence, a left-handed circularly polarized reflected light is generated in the same frequency range.

The gold \(L \) patterns fabricated by electron beam lithography (EBL) are shown in Fig. 2(a), beneath which a 510-nm-thick SiO\(_2\) separation layer and a 100-nm-thick homogeneous silver mirror layer have been fabricated by magnetron sputtering on a silicon substrate. The measured reflectance of the sample is larger than 0.85 in the response frequency [Fig. 2(b)]. From 86 to 116 THz, the amplitude ratio remains unity for both the \(x \)- and \(y \)-polarized incidence [Fig. 2(c)]. The phase difference is \(-90^\circ\) for the \(x \)-polarized incidence, and it becomes \(90^\circ \) for the \(y \)-polarized incidence. Therefore, a dispersion-free quarter-wave plate is experimentally realized and the bandwidth reaches about 30\% of the central frequency.

The electromagnetic response of our structure can be theoretically analyzed. For simplicity, here we ignore the loss of metal and take the refractive index of SiO\(_2\) as 1.0 in the calculation. The irradiation field from the induced surface electric current is proportional to the total external electric field that excites the resonance of the surface electric current, which is the superposition of the electric components of the incident light and the light reflected by the mirror plane. The electric field of light is expressed as a column vector, with subscripts \(x \) and \(y \) representing the \(x \) and \(y \) components of the electric field, respectively. It follows that

\[
\begin{pmatrix}
E_{\text{rad, } x} \\
E_{\text{rad, } y}
\end{pmatrix} =
\begin{pmatrix}
\sigma_1 & \sigma_2 \\
\sigma_2 & \sigma_1
\end{pmatrix}
\begin{pmatrix}
E_{\text{ext, } x} \\
E_{\text{ext, } y}
\end{pmatrix},
\]

(2)

where \(E_{\text{ext}} \) is the total external field on the plane of \(L \) patterns. The symmetry of the \(\sigma \) matrix is due to the mirror symmetry of the structure in the diagonal direction. By taking the \(L \)-patterned unit as two connected RLC circuits [37], the elements in the \(\sigma \) matrix can be described by the symmetric and antisymmetric modes as

\[
\begin{align*}
\sigma_1 & = \frac{i\gamma}{2(\omega_0^2 - \omega^2 - i\gamma\omega)} + \frac{i\gamma}{2(\omega_0^2 + \omega^2 - i\gamma\omega)}, \\
\sigma_2 & = -\frac{i\gamma}{2(\omega_0^2 - \omega^2 - i\gamma\omega)} + \frac{i\gamma}{2(\omega_0^2 + \omega^2 - i\gamma\omega)},
\end{align*}
\]

(3)

where \(\omega_0 \) denotes the response frequency of each individual arm, \(\omega' \) denotes the interaction between them, and \(\gamma \) represents the effective resistance.

For a bare layer of \(L \) patterns only, the excitation field for the resonance of the \(L \) pattern \(E_{\text{ext}} \) is merely the incident light \(E_{\text{inc}} \). Meanwhile, the transmission is the superposition of the incident light and the radiation light based on Eq. (2). For the integrated structure, however, the radiation of the array of \(L \) patterns is excited by both the incident light and the reflected light from the PEC plane, as illustrated in Fig. 1(a). It follows that

\[
\tilde{E}_{\text{ext}} = E_{\text{inc}} e^{-ikd} - E_{\text{inc}} e^{ikd} - E_{\text{rad}} e^{2ikd}.
\]

(4)

From Eqs. (1)–(4), we can get the reflected field \(\tilde{E}_{\text{ref}} \). Suppose the incident light \(\begin{pmatrix} E_{\text{inc, } x} \\ E_{\text{inc, } y} \end{pmatrix} \) is \(x \)-polarized and is denoted as \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \). The parameters in Eq. (3) (\(\omega_0, \omega' \), and \(\gamma \)) can be retrieved from the simulation of a single-layered \(L \)
The dependence of the amplitude of the reflected light on frequency is derived directly from Eq. (2). One may notice that here the interlayer thickness \(d = 911 \text{ nm} \) is larger than the design in Fig. 1(b). The reason is that here we take the refractive index of the dielectric layer as 1.0 for simplicity of calculation, yet SiO\(_2\) possesses a larger refractive index. As elucidated in the Supplemental Material [34], once the refractive index of SiO\(_2\) in the observation frequency regime is taken as \(n = 1.41 \), the resulting separation becomes \(d = 582 \text{ nm} \), which is in reasonable agreement with our design in Fig. 1(b).

To understand the mechanism better, it is interesting to identify how the radiation of the structure \(\vec{E}_{\text{rad}} \) and the phase-conjugation term \(-e^{ikd} + e^{-ikd} \) in Eq. (1) change with frequency, respectively. In our calculation, the radiation of the metallic structure is derived directly from Eq. (2). The dependence of the amplitude of the \(x \) and \(y \) components of \(\vec{E}_{\text{rad}} \) and \(-e^{ikd} + e^{-ikd} \) on frequency is shown in Fig. 3(c). One may find that in the frequency band we are interested in, the \(x \) and \(y \) components of the amplitude of the irradiation \(\vec{E}_{\text{rad}} \) keep increasing, whereas \(| -e^{ikd} + e^{-ikd} | \) decreases when frequency is increased. According to Eq. (1), normalized \(x \) and \(y \) components of the reflected light can be expressed as \(E_{\text{rad,}x}(-e^{ikd} + e^{-ikd}) - 1 \) and \(E_{\text{rad,}y}(-e^{ikd} + e^{-ikd}) \), respectively. By selecting suitable separation \(d \), the increase of \(|E_{\text{rad,}y}| \) can be compensated by the decrease of \(| -e^{ikd} + e^{-ikd} | \) within a certain frequency range. Hence, the amplitude of the \(y \) component of the reflected light becomes dispersion free. Similarly, the amplitude of the \(x \) component of reflected light is frequency independent as well [Fig. 3(d)].

The dispersion-free feature of the phase difference, however, originates from the geometrical symmetry of the structure. When the polarization of incident light is along 45°, due to structural symmetry, the polarization of the reflected light becomes the original state and the amplitude ratio of the reflected light is unity when the electromagnetic loss is ignored. The same situation occurs for 135°-polarized incidence. For \(x \)-polarized incidence, the amplitudes of 45°- and 135°-polarized components are identical. It follows that the amplitudes of reflected light in these two directions are identical as well. In the \(x-y \) coordination system, the components of the reflected light in 45° and 135° orientations are expressed as \(\sqrt{2} (r_{xx} + r_{yx}) \) and \(\sqrt{2} (-r_{xx} + r_{yx}) \), respectively. Since \(r_{xx} \) and \(r_{yx} \) represent the complex amplitude of two components of the reflected light, the fact that \(|r_{xx} + r_{yx}| \) equals \(-r_{xx} + r_{yx} \) indicates that \(r_{xx} \) and \(r_{yx} \) are perpendicular to each other in the complex plane. Therefore, the absolute value of the phase difference for \(r_{xx} \) and \(r_{yx} \) is 90°. Similarly, the value of the phase difference of \(r_{yx} \) and \(r_{yx} \) is 90°.

With this phase-conjugation scheme, a dispersion-free device with other functionalities can be achieved by tuning the structural parameters. For example, by changing the length and width of each arm of the \(L \)-patterned structure to 800 and 150 nm, respectively, and at the same time shrinking the lattice constant to 1400 nm and the thickness of the SiO\(_2\) layer to 420 nm, an ultrabroadband half-wave plate can be realized. Figure 4(a) shows the simulated results, where \(y \)-polarized (\(y \)-polarized) incident light is turned to the \(x \)-polarized (\(x \)-polarized) reflected light, and the intensity of the \(x \) (\(y \)) component in reflection is almost zero in the frequency band from 70 to 145 THz. The structure has been experimentally fabricated, and the two components of the reflection under illumination of the \(x \)- and \(y \)-polarized incidence are illustrated in Fig. 4(b). Meanwhile, the bandwidth of the half-wave plate reaches about 67% of the central wavelength. The light intensity ratio is shown in Fig. 4(c). Within the response frequency range, the ratio is around \(10^7 \), indicating that most of the energy of the \(x \)-polarized (\(y \)-polarized) incidence has been transferred to the \(y \) (\(x \)) component of the reflected light.
The dispersion-free quarter- and half-wave plates allow tuning 50\% and 100\% of the reflected power from one polarization to the perpendicular polarization of the reflected light over a broad frequency band. Moreover, the amplitude ratio between the two perpendicular components of the reflected light can be continuously tuned, and a dispersion-free wave plate with non-unity amplitude ratio can be realized by selecting the structural parameters of the \(L \)-patterned array. For example, when the length and width of each arm of the \(L \) pattern are selected as 1290 and 155 nm, respectively, and we keep the other parameters identical to those in Fig. 1(b), the amplitude ratio becomes 0.84 and 1.19 for \(x \)- and \(y \)-polarized incidence, respectively, in the range of 84–113 THz, as illustrated in Fig. 4(d). Meanwhile, the phase difference remains \(-90^\circ\) and \(90^\circ\) [see the inset of Fig. 4(d)]. In this way, a dispersion-free wave plate for elliptical polarized light is achieved.

Controlling the state of light has been an important topic in nanophotonics. Metamaterials and plasmonics provide the opportunity to miniaturize the devices and realize different wave plate functionalities with new principles. By integrating metallic metastructures and dielectric interlayer, the intrinsic dispersion generated by the resonance of metallic structures is compensated by the interlayer-thickness-sensitive dispersion of the dielectric interlayer, so the dispersion-free optical functionalities can be realized in a very restricted space. We also point out that the principle presented here is universal in physics, and is not limited to tuning the polarization state of light only. Instead, we expect that it can be applied in designing other devices with broadband features and can help to make the ultimate dream of mastering light on the nanoscale come true.

The authors acknowledge support from the MOST of China (Grants No. 2010CB630705 and No. 2012CB921502), the NSF of China (Grants No. 50972057, No. 11034005, No. 11204127, and No. 61077023), the MOE of China (SRFDP No. 20120091120033), and partial support by Jiangsu Province (Grant No. BK2012301).

For the scenario that the interlayer is another dielectric material instead of air, the expression for the reflected light becomes more complicated than Eq. (1) due to reflection and refraction at the dielectric-air boundary, yet the fundamental principle to achieve dispersion-free feature is the same.