Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

  • Open Access

Mathematical Formulation of Multilayer Networks

Manlio De Domenico1, Albert Solé-Ribalta1, Emanuele Cozzo2, Mikko Kivelä3, Yamir Moreno2,4,5, Mason A. Porter6, Sergio Gómez1, and Alex Arenas1

  • 1Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain
  • 2Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza 50018, Spain
  • 3Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX1 3LB, United Kingdom
  • 4Department of Theoretical Physics, University of Zaragoza, Zaragoza 50009, Spain
  • 5Complex Networks and Systems Lagrange Lab, Institute for Scientific Interchange, Turin 10126, Italy
  • 6Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute and CABDyN Complexity Centre, University of Oxford, Oxford OX1 3LB, United Kingdom

Phys. Rev. X 3, 041022 – Published 4 December, 2013

DOI: https://doi.org/10.1103/PhysRevX.3.041022

Abstract

A network representation is useful for describing the structure of a large variety of complex systems. However, most real and engineered systems have multiple subsystems and layers of connectivity, and the data produced by such systems are very rich. Achieving a deep understanding of such systems necessitates generalizing “traditional” network theory, and the newfound deluge of data now makes it possible to test increasingly general frameworks for the study of networks. In particular, although adjacency matrices are useful to describe traditional single-layer networks, such a representation is insufficient for the analysis and description of multiplex and time-dependent networks. One must therefore develop a more general mathematical framework to cope with the challenges posed by multilayer complex systems. In this paper, we introduce a tensorial framework to study multilayer networks, and we discuss the generalization of several important network descriptors and dynamical processes—including degree centrality, clustering coefficients, eigenvector centrality, modularity, von Neumann entropy, and diffusion—for this framework. We examine the impact of different choices in constructing these generalizations, and we illustrate how to obtain known results for the special cases of single-layer and multiplex networks. Our tensorial approach will be helpful for tackling pressing problems in multilayer complex systems, such as inferring who is influencing whom (and by which media) in multichannel social networks and developing routing techniques for multimodal transportation systems.

Popular Summary

Article Text

References (85)

  1. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, Complex Networks: Structure and Dynamics, Phys. Rep. 424, 175 (2006).
  2. M. E. J. Newman, Networks: An Introduction (Oxford University Press, Oxford, England, 2010).
  3. E. Estrada, The Structure of Complex Networks: Theory and Applications (Oxford University Press, Oxford, England, 2011).
  4. P. Holme and J. Saramäki, Temporal Networks, Phys. Rep. 519, 97 (2012).
  5. S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications, Structural Analysis in the Social Sciences Vol. 8 (Cambridge University Press, Cambridge, England, 1994).
  6. M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter, Multilayer Networks, arXiv:1309.7233.
  7. J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, Networks Formed from Interdependent Networks, Nat. Phys. 8, 40 (2012).
  8. S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, Catastrophic Cascade of Failures in Interdependent Networks, Nature (London) 464, 1025 (2010).
  9. M. Dickison, S. Havlin, and H. E. Stanley, Epidemics on Interconnected Networks, Phys. Rev. E 85, 066109 (2012).
  10. Temporal Networks, edited by P. Holme and J. Saramäki (Springer, New York, 2013).
  11. K. Lewis, J. Kaufman, M. Gonzalez, A. Wimmer, and N. Christakis, Tastes, Ties, and Time: A New Social Network Dataset Using Facebook.com, Soc. Networks 30, 330 (2008).
  12. E. A. Leicht and R. M. D’Souza, Percolation on Interacting Networks, arXiv:0907.0894.
  13. P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela, Community Structure in Time-Dependent, Multiscale, and Multiplex Networks, Science 328, 876 (2010).
  14. P. Kaluza, A. Kölzsch, M. T. Gastner, and B. Blasius, The Complex Network of Global Cargo Ship Movements, J. R. Soc. Interface 7, 1093 (2010).
  15. R. Criado, M. Romance, and M. Vela-Pérez, Hyper-structures: A New Approach to Complex Systems, Int. J. Bifurcation Chaos Appl. Sci. Eng. 20, 877 (2010).
  16. J. Gao, S. V. Buldyrev, S. Havlin, and H. E. Stanley, Robustness of a Network of Networks, Phys. Rev. Lett. 107, 195701 (2011).
  17. C. D. Brummitt, R. M. D’Souza, and E. A. Leicht, Suppressing Cascades of Load in Interdependent Networks, Proc. Natl. Acad. Sci. U.S.A. 109, E680 (2012).
  18. O. Yağan and V. Gligor, Analysis of Complex Contagions in Random Multiplex Networks, Phys. Rev. E 86, 036103 (2012).
  19. K.-M. Lee, J. Y. Kim, W.-K. Cho, K.-I. Goh, and I.-M. Kim, Correlated Multiplexity and Connectivity of Multiplex Random Networks, New J. Phys. 14, 033027 (2012).
  20. C. D. Brummitt, K.-M. Lee, and K.-I. Goh, Multiplexity-Facilitated Cascades in Networks, Phys. Rev. E 85, 045102(R) (2012).
  21. S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes, C. J. Pérez-Vicente, Y. Moreno, and A. Arenas, Diffusion Dynamics on Multiplex Networks, Phys. Rev. Lett. 110, 028701 (2013).
  22. M. De Domenico, A. Sole, S. Gomez, and A. Arenas, Random Walks on Multiplex Networks, arXiv:1306.0519.
  23. G. Bianconi, Statistical Mechanics of Multiplex Networks: Entropy and Overlap, Phys. Rev. E 87, 062806 (2013).
  24. L. Solá, M. Romance, R. Criado, J. Flores, A. Garcia del Amo, and S. Boccaletti, Eigenvector Centrality of Nodes in Multiplex Networks, Chaos 23, 033131 (2013).
  25. A. Halu, R. J. Mondragon, P. Panzarasa, and G. Bianconi, Multiplex PageRank, arXiv:1306.3576.
  26. E. Cozzo, A. Arenas, and Y. Moreno, Stability of Boolean Multilevel Networks, Phys. Rev. E 86, 036115 (2012).
  27. C. Granell, S. Gómez, and A. Arenas, Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks, Phys. Rev. Lett. 111, 128701 (2013).
  28. E. Cozzo, R. A. Baños, S. Meloni, and Y. Moreno, Contact-Based Social Contagion in Multiplex Networks, arXiv:1307.1656.
  29. J. Gómez-Gardeñes, I. Reinares, A. Arenas, and L. M. Floría, Evolution of Cooperation in Multiplex Networks, Sci. Rep. 2, 620 (2012).
  30. A. Cardillo, J. Gómez-Gardeñes, M. Zanin, M. Romance, D. Papo, F. del Pozo, and S. Boccaletti, Emergence of Network Features from Multiplexity, Sci. Rep. 3, 1344 (2013).
  31. R. Criado, J. Flores, A. García del Amo, J. Gómez-Gardeñes, and M. Romance, A Mathematical Model for Networks with Structures in the Mesoscale, Int. J. Comput. Math. 89, 291 (2012).
  32. F. Radicchi and A. Arenas, Abrupt Transition in the Structural Formation of Interconnected Networks, Nat. Phys. 9, 717 (2013).
  33. A. Solé-Ribalta, M. De Domenico, N. E. Kouvaris, A. Díaz-Guilera, S. Gómez, and A. Arenas, Spectral Properties of the Laplacian of Multiplex Networks, Phys. Rev. E 88, 032807 (2013).
  34. S. E. Chang, H. A. Seligson, and R. T. Eguchi, Multidisciplinary Center for Earthquake Engineering Research (MCEER) Technical Report No. NCEER-96-0011, 1996.
  35. R. G. Little, Controlling Cascading Failure: Understanding the Vulnerabilities of Interconnected Infrastructures, J. Urban Technol. 9, 109 (2002).
  36. L. M. Verbrugge, Multiplexity in Adult Friendships, Social Forces 57, 1286 (1979).
  37. J. S. Coleman, Social Capital in the Creation of Human Capital, Am. J. Sociology 94, S95 (1988).
  38. D. Krackhardt, Cognitive Social Structures, Soc. Networks 9, 109 (1987).
  39. P. Pattison and S. Wasserman, Logit Models and Logistic Regressions for Social Networks: II. Multivariate Relations, Brit. J. Math. Stat. Psychol. 52, 169 (1999).
  40. R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, Tensor Analysis, and Applications, Applied Mathematical Sciences Vol. 75 (Springer-Verlag, New York, 1988), 2nd ed.
  41. D. S. Bassett, M. A. Porter, N. F. Wymbs, S. T. Grafton, J. M. Carlson, and P. J. Mucha, Robust Detection of Dynamic Community Structure in Networks, Chaos 23, 013142 (2013).
  42. M. M. G. Ricci and T. Levi-Civita, Méthodes de calcul différentiel absolu et leurs applications, Math. Ann. 54, 125 (1900).
  43. B. Min and K.-I. Goh, Layer-Crossing Overhead and Information Spreading in Multiplex Social Networks, arXiv:1307.2967.
  44. D. Horne (private communication).
  45. T. G. Kolda and B. W. Bader, Tensor Decompositions and Applications, SIAM Rev. 51, 455 (2009).
  46. P. Ronhovde and Z. Nussinov, Multiresolution Community Detection for Megascale Networks by Information-Based Replica Correlations, Phys. Rev. E 80, 016109 (2009).
  47. E. Cozzo, M. Kivelä, M. De Domenico, A. Solé-Ribalta, A. Arenas, S. Gómez, M. A. Porter, and Y. Moreno, Clustering Coefficients in Multiplex Networks, arXiv:1307.6780.
  48. S.-H. Yook, H. Jeong, A.-L. Barabási, and Y. Tu, Weighted Evolving Networks, Phys. Rev. Lett. 86, 5835 (2001).
  49. A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, The Architecture of Complex Weighted Networks, Proc. Natl. Acad. Sci. U.S.A. 101, 3747 (2004).
  50. M. E. J. Newman, Properties of Highly Clustered Networks, Phys. Rev. E 68, 026121 (2003).
  51. D. J. Watts and S. H. Strogatz, Collective Dynamics of “Small-World” Networks, Nature (London) 393, 440 (1998).
  52. J. Saramäki, M. Kivelä, J.-P. Onnela, K. Kaski, and J. Kertész, Generalizations of the Clustering Coefficient to Weighted Complex Networks, Phys. Rev. E 75, 027105 (2007).
  53. S. E. Ahnert, D. Garlaschelli, T. M. A. Fink, and G. Caldarelli, Ensemble Approach to the Analysis of Weighted Networks, Phys. Rev. E 76, 016101 (2007).
  54. T. Opsahl and P. Panzarasa, Clustering in Weighted Networks, Soc. Networks 31, 155 (2009).
  55. G. Fagiolo, Clustering in Complex Directed Networks, Phys. Rev. E 76, 026107 (2007).
  56. P. Bonacich, Technique for Analyzing Overlapping Memberships, Sociol. Method. 4, 176 (1972).
  57. P. Bonacich, Factoring and Weighing Approaches to Status Scores and Clique Identification, J. Math. Sociol. 2, 113 (1972).
  58. L. Katz, A New Status Index Derived from Sociometric Analysis, Psychometrika 18, 39 (1953).
  59. M. A. Porter, J.-P. Onnela, and P. J. Mucha, Communities in Networks, Not. Am. Math. Soc. 56, 1082 (2009) [http://www.ams.org/notices/200909/rtx090901082p.pdf].
  60. S. Fortunato, Community Detection in Graphs, Phys. Rep. 486, 75 (2010).
  61. M. E. J. Newman and M. Girvan, Finding and Evaluating Community Structure in Networks, Phys. Rev. E 69, 026113 (2004).
  62. M. E. J. Newman, Modularity and Community Structure in Networks, Proc. Natl. Acad. Sci. U.S.A. 103, 8577 (2006).
  63. M. E. J. Newman, Finding Community Structure in Networks Using the Eigenvectors of Matrices, Phys. Rev. E 74, 036104 (2006).
  64. R. V. Solé and S. Valverde, in Complex Networks (Springer, New York, 2004), p. 189–207.
  65. G. Bianconi, The Entropy of Randomized Network Ensembles, Europhys. Lett. 81, 28005 (2008).
  66. K. Anand and G. Bianconi, Entropy Measures for Networks: Toward an Information Theory of Complex Topologies, Phys. Rev. E 80, 045102(R) (2009).
  67. G. Bianconi, Entropy of Network Ensembles, Phys. Rev. E 79, 036114 (2009).
  68. S. Johnson, J. J. Torres, J. Marro, and M. A. Muñoz, Entropic Origin of Disassortativity in Complex Networks, Phys. Rev. Lett. 104, 108702 (2010).
  69. S. L. Braunstein, S. Ghosh, and S. Severini, The Laplacian of a Graph as a Density Matrix: A Basic Combinatorial Approach to Separability of Mixed States, Ann. Combin. 10, 291 (2006).
  70. B. Mohar, in Graph Theory, Combinatorics, and Applications (Wiley, Hoboken, NJ, 1991), Vol. 2, p. 871–898.
  71. C. D. Godsil and G. Royle, Algebraic Graph Theory (Springer-Verlag, New York, 2001), Vol. 207.
  72. F. R. K. Chung, Spectral Graph Theory (American Mathematical Society, Providence, RI, 1997), 2nd ed.
  73. A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Synchronization in Complex Networks, Phys. Rep. 469, 93 (2008).
  74. J. D. Noh and H. Rieger, Random Walks on Complex Networks, Phys. Rev. Lett. 92, 118701 (2004).
  75. S. Brin and L. Page, in Proceedings of the Seventh International World-Wide Web Conference (WWW 1998) (1998), http://ilpubs.stanford.edu:8090/361/.
  76. T. Callaghan, P. J. Mucha, and M. A. Porter, Random Walker Ranking for NCAA Division I-A Football, Am. Math. Mon. 114, 761 (2007) [http://www.maa.org/publications/periodicals/american-mathematical-monthly/american-mathematical-monthly-november-2007].
  77. G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. G. E. da Luz, E. P. Raposo, and H. E. Stanley, Optimizing the Success of Random Searches, Nature (London) 401, 911 (1999).
  78. S.-J. Yang, Exploring Complex Networks by Walking on Them, Phys. Rev. E 71, 016107 (2005).
  79. L. da Fontoura Costa and G. Travieso, Exploring Complex Networks through Random Walks, Phys. Rev. E 75, 016102 (2007).
  80. H. D. Rozenfeld, J. E. Kirk, E. M. Bollt, and D. ben-Avraham, Statistics of Cycles: How Loopy Is Your Network?, J. Phys. A 38, 4589 (2005).
  81. D. Gfeller and P. De Los Rios, Spectral Coarse Graining of Complex Networks, Phys. Rev. Lett. 99, 038701 (2007).
  82. M. Rosvall and C. T. Bergstrom, An Information-Theoretic Framework for Resolving Community Structure in Complex Networks, Proc. Natl. Acad. Sci. U.S.A. 104, 7327 (2007).
  83. R. Lambiotte, J.-C. Delvenne, and M. Barahona, Laplacian Dynamics and Multiscale Modular Structure in Networks, arXiv:0812.1770.
  84. N. F. Wymbs, D. S. Bassett, P. J. Mucha, M. A. Porter, and S. T. Grafton, Differential Recruitment of the Sensorimotor Putamen and Frontoparietal Cortex During Motor Chunking in Humans, Neuron 74, 936 (2012).
  85. M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra (Academic, Waltham, MA, 1974).

Outline

Information

Sign In to Your Journals Account

Filter

Filter

Article Lookup

Enter a citation