- Open Access
Engineering impurity Bell states through coupling with a quantum bath
Phys. Rev. Research 6, 043042 – Published 16 October, 2024
DOI: https://doi.org/10.1103/PhysRevResearch.6.043042
Abstract
We theoretically demonstrate the feasibility of creating Bell states in multicomponent ultracold atomic gases by solely using the ability to control the interparticle interactions via Feshbach resonances. For this we consider two distinguishable impurities immersed in an atomic background cloud of a few bosons, with the entire system being confined in a one-dimensional harmonic trap. By analyzing the numerically obtained ground states we demonstrate that the two impurities can form spatially entangled bipolaron states due to mediated interactions from the bosonic bath. Our analysis is based on calculating the correlations between the two impurities in a two-mode basis, which is experimentally accessible by measuring the particle positions in the left or right sides of the trap. While interspecies interactions are crucial in order to create the strongly entangled impurity states, they can also inhibit correlations depending on the ordering of the impurities and three-body impurity-bath correlations. We show how these drawbacks can be mitigated by manipulating the properties of the bath, namely its size, mass, and intraspecies interactions, allowing one to create impurity Bell states over a wide range of impurity-impurity interactions.
Physics Subject Headings (PhySH)
Article Text
References (62)
- A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, J. Eisert, D. Esteve, N. Gisin, S. J. Glaser, F. Jelezko, S. Kuhr, M. Lewenstein, M. F. Riedel, P. O. Schmidt, R. Thew, A. Wallraff, I. Walmsley, and F. K. Wilhelm, The quantum technologies roadmap: A European community view, New J. Phys. 20, 080201 (2018).
- J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and E. Kashefi, Quantum certification and benchmarking, Nat. Rev. Phys. 2, 382 (2020).
- J. Fraxanet, T. Salamon, and M. Lewenstein, The coming decades of quantum simulation, in Sketches of Physics: The Celebration Collection, edited by R. Citro, M. Lewenstein, A. Rubio, W. P. Schleich, J. D. Wells, and G. P. Zank (Springer, New York, 2023), pp. 85–125.
- R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).
- N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).
- S. Mistakidis, A. Volosniev, R. Barfknecht, T. Fogarty, T. Busch, A. Foerster, P. Schmelcher, and N. Zinner, Few-body Bose gases in low dimensions: A laboratory for quantum dynamics, Phys. Rep. 1042, 1 (2023).
- T. Sowiński and M. Á. García-March, One-dimensional mixtures of several ultracold atoms: A review, Rep. Prog. Phys. 82, 104401 (2019).
- A. Schirotzek, C.-H. Wu, A. Sommer, and M. W. Zwierlein, Observation of Fermi polarons in a tunable Fermi liquid of ultracold atoms, Phys. Rev. Lett. 102, 230402 (2009).
- P. Massignan, M. Zaccanti, and G. M. Bruun, Polarons, dressed molecules and itinerant ferromagnetism in ultracold Fermi gases, Rep. Prog. Phys. 77, 034401 (2014).
- N. B. Jørgensen, L. Wacker, K. T. Skalmstang, M. M. Parish, J. Levinsen, R. S. Christensen, G. M. Bruun, and J. J. Arlt, Observation of attractive and repulsive polarons in a Bose-Einstein condensate, Phys. Rev. Lett. 117, 055302 (2016).
- M.-G. Hu, M. J. Van de Graaff, D. Kedar, J. P. Corson, E. A. Cornell, and D. S. Jin, Bose polarons in the strongly interacting regime, Phys. Rev. Lett. 117, 055301 (2016).
- R. Schmidt, M. Knap, D. A. Ivanov, J.-S. You, M. Cetina, and E. Demler, Universal many-body response of heavy impurities coupled to a Fermi sea: A review of recent progress, Rep. Prog. Phys. 81, 024401 (2018).
- C. Baroni, B. Huang, I. Fritsche, E. Dobler, G. Anich, E. Kirilov, R. Grimm, M. A. Bastarrachea-Magnani, P. Massignan, and G. M. Bruun, Mediated interactions between Fermi polarons and the role of impurity quantum statistics, Nat. Phys. 20, 68 (2024).
- M. Cetina, M. Jag, R. S. Lous, I. Fritsche, J. T. Walraven, R. Grimm, J. Levinsen, M. M. Parish, R. Schmidt, M. Knap et al., Ultrafast many-body interferometry of impurities coupled to a Fermi sea, Science 354, 96 (2016).
- M. Cetina, M. Jag, R. S. Lous, J. T. M. Walraven, R. Grimm, R. S. Christensen, and G. M. Bruun, Decoherence of impurities in a Fermi sea of ultracold atoms, Phys. Rev. Lett. 115, 135302 (2015).
- A. Lampo, S. H. Lim, M. Á. García-March, and M. Lewenstein, Bose polaron as an instance of quantum brownian motion, Quantum 1, 30 (2017).
- L. D. Landau and S. I. Pekar, 67 - The effective mass of the polaron, J.Exp.Theor.Phys. 18, 419 (1948).
- A. Camacho-Guardian, L. A. P. Ardila, T. Pohl, and G. M. Bruun, Bipolarons in a Bose-Einstein condensate, Phys. Rev. Lett. 121, 013401 (2018).
- C. Charalambous, M. A. Garcia-March, A. Lampo, M. Mehboud, and M. Lewenstein, Two distinguishable impurities in BEC: Squeezing and entanglement of two Bose polarons, SciPost Phys. 6, 010 (2019).
- W. Casteels, J. Tempere, and J. T. Devreese, Bipolarons and multipolarons consisting of impurity atoms in a Bose-Einstein condensate, Phys. Rev. A 88, 013613 (2013).
- A. Camacho-Guardian and G. M. Bruun, Landau effective interaction between quasiparticles in a Bose-Einstein condensate, Phys. Rev. X 8, 031042 (2018).
- M. Will, G. E. Astrakharchik, and M. Fleischhauer, Polaron interactions and bipolarons in one-dimensional Bose gases in the strong coupling regime, Phys. Rev. Lett. 127, 103401 (2021).
- J. Jager and R. Barnett, The effect of boson-boson interaction on the bipolaron formation, New J. Phys. 24, 103032 (2022).
- J. Tempere, W. Casteels, M. K. Oberthaler, S. Knoop, E. Timmermans, and J. T. Devreese, Feynman path-integral treatment of the BEC-impurity polaron, Phys. Rev. B 80, 184504 (2009).
- B. Kain and H. Y. Ling, Polarons in a dipolar condensate, Phys. Rev. A 89, 023612 (2014).
- B. Kain and H. Y. Ling, Generalized Hartree-Fock-Bogoliubov description of the Fröhlich polaron, Phys. Rev. A 94, 013621 (2016).
- F. Grusdt, All-coupling theory for the Fröhlich polaron, Phys. Rev. B 93, 144302 (2016).
- F. Grusdt, G. E. Astrakharchik, and E. Demler, Bose polarons in ultracold atoms in one dimension: beyond the Fröhlich paradigm, New J. Phys. 19, 103035 (2017).
- M. Drescher, M. Salmhofer, and T. Enss, Medium-induced interaction between impurities in a Bose-Einstein condensate, Phys. Rev. A 107, 063301 (2023).
- R. Schmidt and T. Enss, Self-stabilized Bose polarons, SciPost Phys. 13, 054 (2022).
- A. Petković and Z. Ristivojevic, Mediated interaction between polarons in a one-dimensional Bose gas, Phys. Rev. A 105, L021303 (2022).
- M. Mehboudi, A. Lampo, C. Charalambous, L. A. Correa, M. Á. García-March, and M. Lewenstein, Using polarons for sub-nk quantum nondemolition thermometry in a Bose-Einstein condensate, Phys. Rev. Lett. 122, 030403 (2019).
- A. Lampo, C. Charalambous, M. Á. García-March, and M. Lewenstein, Non-Markovian polaron dynamics in a trapped Bose-Einstein condensate, Phys. Rev. A 98, 063630 (2018).
- M. M. Khan, H. Terças, J. T. Mendonça, J. Wehr, C. Charalambous, M. Lewenstein, and M. A. García-March, Quantum dynamics of a Bose polaron in a -dimensional Bose-Einstein condensate, Phys. Rev. A 103, 023303 (2021).
- D. Breu, E. V. Marcos, M. Will, and M. Fleischhauer, Impurities in a trapped 1D Bose gas of arbitrary interaction strength: Localization-delocalization transition and absence of self-localization, arXiv:2408.11549.
- L. Zschetzsche and R. E. Zillich, Suppression of polaron self-localization by correlations, Phys. Rev. Res. 6, 023137 (2024).
- M. García-March, A. S. Dehkharghani, and N. Zinner, Entanglement of an impurity in a few-body one-dimensional ideal Bose system, J. Phys. B 49, 075303 (2016).
- A. S. Dehkharghani, A. G. Volosniev, and N. T. Zinner, Coalescence of two impurities in a trapped one-dimensional Bose gas, Phys. Rev. Lett. 121, 080405 (2018).
- K. Keiler, S. I. Mistakidis, and P. Schmelcher, Polarons and their induced interactions in highly imbalanced triple mixtures, Phys. Rev. A 104, L031301 (2021).
- F. Theel, S. I. Mistakidis, K. Keiler, and P. Schmelcher, Counterflow dynamics of two correlated impurities immersed in a bosonic gas, Phys. Rev. A 105, 053314 (2022).
- S. I. Mistakidis, A. G. Volosniev, and P. Schmelcher, Induced correlations between impurities in a one-dimensional quenched Bose gas, Phys. Rev. Res. 2, 023154 (2020).
- F. Theel, S. I. Mistakidis, and P. Schmelcher, Crossover from attractive to repulsive induced interactions and bound states of two distinguishable Bose polarons, SciPost Phys. 16, 023 (2024).
- T. D. Anh-Tai, M. Mikkelsen, T. Busch, and T. Fogarty, Quantum chaos in interacting Bose-Bose mixtures, SciPost Phys. 15, 048 (2023).
- A. Bergschneider, V. M. Klinkhamer, J. H. Becher, R. Klemt, L. Palm, G. Zürn, S. Jochim, and P. M. Preiss, Experimental characterization of two-particle entanglement through position and momentum correlations, Nat. Phys. 15, 640 (2019).
- K. Huang and C. N. Yang, Quantum-mechanical many-body problem with hard-sphere interaction, Phys. Rev. 105, 767 (1957).
- C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82, 1225 (2010).
- E. Haller, M. J. Mark, R. Hart, J. G. Danzl, L. Reichsöllner, V. Melezhik, P. Schmelcher, and H.-C. Nägerl, Confinement-induced resonances in low-dimensional quantum systems, Phys. Rev. Lett. 104, 153203 (2010).
- M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys. Rev. Lett. 81, 938 (1998).
- M. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K. Dieckmann, Quantum degenerate two-species Fermi-Fermi mixture coexisting with a Bose-Einstein condensate, Phys. Rev. Lett. 100, 010401 (2008).
- C.-H. Wu, I. Santiago, J. W. Park, P. Ahmadi, and M. W. Zwierlein, Strongly interacting isotopic Bose-Fermi mixture immersed in a Fermi sea, Phys. Rev. A 84, 011601(R) (2011).
- M. Bonneau, W. J. Munro, K. Nemoto, and J. Schmiedmayer, Characterizing twin-particle entanglement in double-well potentials, Phys. Rev. A 98, 033608 (2018).
- A. Usui, T. Fogarty, S. Campbell, S. A. Gardiner, and T. Busch, Spin–orbit coupling in the presence of strong atomic correlations, New J. Phys. 22, 013050 (2020).
- V. Coffman, J. Kundu, and W. K. Wootters, Distributed entanglement, Phys. Rev. A 61, 052306 (2000).
- A. Seshadri, V. Madhok, and A. Lakshminarayan, Tripartite mutual information, entanglement, and scrambling in permutation symmetric systems with an application to quantum chaos, Phys. Rev. E 98, 052205 (2018).
- G. Bellomia, C. Mejuto-Zaera, M. Capone, and A. Amaricci, Quasilocal entanglement across the Mott-Hubbard transition, Phys. Rev. B 109, 115104 (2024).
- L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys. 80, 517 (2008).
- J. Rotureau, Interaction for the trapped Fermi gas from a unitary transformation of the exact two-body spectrum, Eur. Phys. J. D 67, 153 (2013).
- E. Lindgren, J. Rotureau, C. Forssén, A. G. Volosniev, and N. T. Zinner, Fermionization of two-component few-fermion systems in a one-dimensional harmonic trap, New J. Phys. 16, 063003 (2014).
- A. Dehkharghani, A. Volosniev, J. Lindgren, J. Rotureau, C. Forssén, D. Fedorov, A. Jensen, and N. Zinner, Quantum magnetism in strongly interacting one-dimensional spinor Bose systems, Sci. Rep. 5, 10675 (2015).
- L. Rammelmüller, D. Huber, and A. G. Volosniev, A modular implementation of an effective interaction approach for harmonically trapped fermions in 1D, SciPost Phys. Codebases, 12 (2023).
- A. Chrostowski and T. Sowinski, Efficient construction of many-body Fock states having the lowest energies, Acta Phys. Pol. A 136, 566 (2019).
- M. Plodzien, D. Wiater, A. Chrostowski, and T. Sowinski, Numerically exact approach to few-body problems far from a perturbative regime, arXiv:1803.08387.