ERRATA

Experimental Validation of the Linear Theory of Stimulated Raman Scattering Driven by a 500-fs Laser Pulse in a Preformed Underdense Plasma
C. Rousseaux, G. Malka, J. L. Miquel, F. Amiranoff, S. D. Baton, and Ph. Mounaix

The expression of the nonlinearly saturated reflectivity \(R_{\text{max}} \) as given at the top of page 4658 is not correct. The few lines devoted to this point should be modified as follows:

"On the other hand, the ratio of the SRS EPW energy to that of the backscattered transverse wave is equal to \(\sqrt{n/n_c}/(1 - \sqrt{n/n_c}) \). Assuming then that, at saturation, all the available incident energy is totally dispatched between the two SRS daughter waves, one finds that the energy of the backscattered transverse wave must be less than \(R_{\text{max}} \equiv \eta(1 - \sqrt{n/n_c}) \), where the factor \(\eta \) denotes the fraction of the incident energy which is available for backward SRS."

The modified Manley-Rowe relation invoked in the Letter links the energy density of the waves \textit{locally} inside the interaction region (cf. Ref. [15] of the Letter). It cannot be used as it stands to link the \textit{global} energy of the waves (it should be noticed that a more careful use of this relation does give the proper value of \(R_{\text{max}} \), as it should be). This correction yields a value of \(R_{\text{max}} \) which is larger than that of the Letter by a factor of 1.26.

It must be stressed that this correction applies to the nonlinearly saturated regime of the instability only, which was a very secondary point in our Letter. It does not affect our main result that the short pulse driven SRS in the \textit{linear} regime can be properly described by the theory of three wave parametric instabilities growing from thermal equilibrium noise.