ERRATA

It comes to my attention that the asymptotic expansion of the reported solution in my paper as \(t \to \infty \) was somehow in error.

In Eq. (20) on p. 2407, \(Z(s) \) is defined as \(s^{1/2} H_1(s) \times (s^3 D)^{1/2} / 3 \lambda^2 \), satisfying the Airy equation \(Z''(s) = 4 D s Z(s) / \lambda^4 \). The other independent solution of the equation is \(Z'(s) \), a complex conjugate of \(Z(s) \) for \(s \) real. The Wronskian of these two solutions is a constant, \(Z'(s) Z''(s) - Z'(s) Z(s) = -2i / \pi \). From Eq. (20), we have

\[
\langle P(0,t) \rangle = \frac{i \lambda^2 t}{4 \pi D} \int_{-\infty}^{\infty} ds \frac{Z'(s)}{Z(s)} e^{st}.
\]

Since \(\langle P(0,t) \rangle \) is real from Eq. (1), the complex conjugate of the above expression is equal to itself. Then applying the Wronskian, we have the solution simplified,

\[
\langle P(0,t) \rangle = \frac{\lambda^2 t}{8 \pi D} \int_{-\infty}^{\infty} ds \left[\frac{Z'(s)}{Z(s)} - \frac{Z'(s)}{Z(s)} \right] e^{st} = \frac{\lambda^2 t}{4 \pi^2 D} \int_{-\infty}^{\infty} ds \left| \frac{Z(s)}{Z'(s)} \right|^2 e^{st}.
\]

This integration is convergent for \(t > 0 \).

\[
|Z(s)|^2 \to \frac{3 \lambda^2}{2 \pi D(s)} \exp \left[\frac{8 (D s)^{1/2}}{3 \lambda^2} \right]
\]

as \(s \gg 1 \). In the limit \(t \to \infty \), the main contribution of the integration is from \(s \gg 1 \). Then the correct asymptotic behavior as \(t \to \infty \) is given by

\[
\langle P(0,t) \rangle \to \frac{\lambda^4 t^{5/2}}{48 \pi D^3} \exp \left[\frac{\lambda^4 t^3}{48 D^3} \right].
\]

Numerical verification of this asymptotic result is still absent. The formerly reported numerical simulation which used a standard random Gaussian variable of zero mean and variance \(1 \) to simulate the white-noise Gaussian variable of an infinite variance seems to be inappropriate.

I wish to thank Dr. Rosenbluth for useful communication and Dr. Guyer, Dr. Machta, Dr. Prasad, Dr. Bhatia, Dr. Arora, Dr. Gredekul, and Dr. Pastur for their valuable comments.

The acknowledgements should have included support from the Ohio Supercomputer Center, without which this work would not have been possible.

In Table I the error of the value of \(\Gamma_0 / \Gamma \) for the state at 3.058 MeV in \(^{150}\text{Nd} \) (line 4, column 5) is incorrectly listed as 13 meV. The correct table entry should read \(26.9(3.0) \) meV. The error of the corresponding \(B(M1) \) value remains unaffected.

The complete numerical data set for the strength distribution in \(^{150}\text{Nd} \) is given in a forthcoming publication [H. H. Pitz et al., Nucl. Phys. A (to be published)].

In the discussion concerning the low-field Hall resistance of the two-constriction geometry at the bottom of p. 998, right-hand column, and at the top of p. 999, we should have added a reference to Ford et al.\(^{15}\) They independently and first pointed out the importance of reflection of injected electrons from the 45° wall in the Hall junction into the voltage lead opposite to the direction of the Lorentz force.