USE OF A RELATIVISTIC OSCILLATOR MODEL TO EXPLAIN THE SEA-GULL EFFECT AND ANOMALOUS CHARGED-LEPTON PRODUCTION.

On p. 662 Eq. (6) should be replaced by the following:

\[
\frac{dN}{dz} = \left\{ \frac{3}{4} - 3x^3 \right\} \ln x - \frac{35x^4}{16} + \frac{5x^2}{2} - \frac{9x}{4} + \frac{7x}{2} - \frac{25}{16} + \left[\frac{(3/4 - 3x^3)\ln x - 35x^4}{16} \right. \\
\left. + \frac{5x^2}{2} - \frac{9x}{4} + \frac{7x}{2} - \frac{25}{16} \right \} 3p_0^2,
\]

where \(x = k_0 / q_0 \approx p_1 / p_{1_{\text{MAX}}} \). The last term in brackets is the contribution from the first emission. \(dN/dz \) is obtained from an identical manipulation of Eq. (4) without the factor \(p_0^2(1 - z_i / z_{1_{\text{MAX}}}) \), or from the solution in Ref. 2. Then

\[
zdN/dz = 3[(1 - x)^2 + z(1 - x)^3] = 3(1 - x)^2.
\]

SOLUTION OF THE X-RAY “PHASE PROBLEM.”

The wrong figure was used for Fig. 4. The corrected figure is given below.

Fig. 4. Relative excitations of modes of propagation. Calculated for negative- and positive-phase products.