NEW CLASS OF DISPERSION SUM RULES FOR
FORWARD SCATTERING. David J. George and

Equation (17) should read:
\[
\int_{\omega_0}^{\infty} \frac{dq}{q^4} \left[\frac{3\omega^2 - 4\mu^2}{\omega^2} \right]
+ \frac{1}{\mu} \text{Re} \left[T(\omega) - T(\mu) \right] \left[\frac{\omega^2 - 4\mu^2}{\omega^2} \right] = 0.
\]

Note that \(\sigma(\omega) \) may be replaced by \([\sigma(\omega) - \text{const}] \) without changing the value of the integral.

ADLER-WEISBERGER SUM RULE AND THE
GOLDBERGER-TREIMAN RELATION FOR NU-
(1968)].

It should be noted that for Ref. 2 there is an er-
20, 1134(E) (1968)] which reports that there was
a miscalculation of \(\Delta \). Also, an apology is due to
Professor H. Primakoff and Professor W. Kim,
the authors of Ref. 1, who did consider the con-
tributions from the nuclear disintegration and the
nuclear excited states in their treatment of a nu-
cleus as “an elementary particle.”

A SEARCH FOR MUONIUM-ANTIMUONIUM
CONVERSION. J. J. Amato, P. Crane, V. W.
Hughes, D. L. Morgan, Jr., J. E. Rothberg, and
(1968)].

The name of D. L. Morgan, Jr., was inadver-
tently omitted from the original by-line.