ERRATA

In this Letter, a sign error was attributed (Ref. 10) to D. N. Stacey in the evaluation of the normal mass shift in his work1 on the optical isotope shift (I.S.) of the Sn isotopes. We now realize that Stacey's sign was indeed the correct one, i.e., we were wrong.

We seize this opportunity to point out that recently further e− scattering results5 have become available which provide new predictions for the muonic Kα I.S. in the Ca isotopes (including Ca40). These predictions, which should be compared with column 2 of our Table I, are (in keV) as follows: E(Ca40)−E(Ca48) = 1.07 ± 0.2, E(Ca40)−E(Ca44) = 0.82 ± 0.10, and E(Ca40)−E(Ca42) = −0.41 ± 0.08. The assignments of error are provisional.

We thank Dr. D. N. Stacey for helpful correspondence, and apologize to him for our erroneous criticism. We are grateful to Professor D. G. Ravenhall for communicating to us the unpublished results of Ref. 2.

2K. J. van Oostrum, R. Hofstadter, G. K. Nölkeke, M. R. Yearian, B. C. Clark, R. Herman, and D. G. Ravenhall, to be published.

There is a typographical error on p. 81, second column: "E_S and E_N are the induced self-consistent electronic fields..." should read "...self-consistent electric fields..."

On p. 83, first column, is another typographical error: "polarization ε[[110]]" should read "polarization ε[[110]]." This is correct on both figures. On p. 82, second column: The equality $q^2e^2/4\pi\omega\sigma_{1N}=1$ is for most metals satisfied somewhere in the frequency range 200-2000 Mc/sec on a free-electron model. As an example: For indium and lead it occurs near the lower end, for aluminum near the upper end of this frequency range, and for tin at intermediate frequencies.