ERRATA

Page 515, column 1, five lines from the bottom, should read, "Partridge and Series have shown that by observing transfer of coherence, the spin-exchange effect can be seen for \(J = \frac{3}{2} \) provided the \(J = \frac{1}{2} \) state is polarized such that the frequency for this field must be near resonance for the system that it is driving, with the condition that the difference between the frequencies must not greatly exceed the decay constant of the receiving system."

The caption of Fig. 2 was printed in an incomplete form. The complete caption reads as follows: The cross section \(d\sigma/d\Omega_1 d\Omega_2 \) (\(\theta_1 = \theta_2 = 30^\circ \)) as a function of the incident energy. Experimental data: open squares, Ref. 1; cross, Ref. 2; open circle, Ref. 3; solid circles, present data. Theory: solid curve, Ref. 6 (Tabakin potential); open inverted triangle, Ref. 4 (Yale potential); open upright triangles, Ref. 10 (Hamada-Johnston potential); solid triangle, Ref. 10 (Tabakin potential). For all triangles, the ordinate of the figure should be multiplied by the factor 3.

The minimum in the \(H = 0 \) electroreflectance for GaSb in Fig. 3 occurs at 0.726 eV. This is taken as the GaSb energy gap and when rounded off to two significant figures is 0.73 eV, not 0.74 eV as stated. This value agrees with that from optical absorption of W. M. Becker, A. K. Ramdas, and H. Y. Fan, J. Appl. Phys. 32, 2094 (1961). We thank B. Kosicki for pointing out the error in the text.

Equations (10) and (12) and the expressions for \(J(t_1) \) and \(J(t_2) \) in the final paragraph all contain the numerical coefficient "9," consistently misprinted as the effective charge symbol "\(q \)" in the latter equations; for example, correct equations are \(J(t_1) \equiv 9\varepsilon \mu^2 V^4/32DL^3 \) and \(J(t_2) \equiv 9\varepsilon \mu V^4/8L^3 \). In Ref. 12 the second equation should have appeared as

\[
J = (1 - e^{-\mu V/D})^{-1/2} (\varepsilon/L) \dot{V},
\]
while the equation in Ref. 13 should have appeared as

\[
J(0) = 3\varepsilon \dot{V}(0)/2L.
\]

(1) The co-author C. S. Wu should be more explicitly identified as Chi-Shiang Wu.

(2) In Table I, column 3, the values of \(\varepsilon_{\text{eff}} \) should be uniformly diminished by 0.20.

RAMAN SCATTERING FROM MIXED CRYSTALS \((\text{Ca}_x\text{Sr}_1-x)_2\text{F}_2\) AND \((\text{Sr}_x\text{Ba}_{1-x})_2\text{F}_2\). R. K. Chang, Brad Lacina, and P. S. Pershan [Phys. Rev. Letters 17, 755 (1966)].

The last sentence of the first paragraph on page 757 refers to a "408-cm⁻¹, second-order line, in pure CaF₂." This line has been misidentified and its origin, although unknown, is not a second-order Raman line of pure CaF₂.