
 

Stellarators with Permanent Magnets
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It is shown that the magnetic-field coils of a stellarator can, at least in principle, be substantially
simplified by the use of permanent magnets. Such magnets cannot create toroidal magnetic flux, but they
can be used to shape the plasma and thus to create poloidal flux and rotational transform, thereby easing the
requirements on the magnetic-field coils. As an example, a quasiaxisymmetric stellarator configuration is
constructed with only 8 circular coils (all identical) and permanent magnets.
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Stellarators, tokamaks, and other devices for fusion
plasma confinement use electromagnets to create the mag-
netic field. In the case of stellarators, the required magnetic-
field coils can be very complicated and contribute signifi-
cantly to the overall cost of the device [1]. In the present
Letter, we suggest that permanent magnets could be used to
shape the plasma and drastically simplify the coils. Our
emphasis is onmathematical aspects of this problemwhereas
other issues will be discussed in subsequent papers. These
issues include properties of permanent magnets and why
certain types are particularly suitable for stellarators, ques-
tions of engineering, assembly, and practical limitations.
A magnetic field B tracing out toroidal surfaces can

never be created by permanent magnets alone, because it
follows from Ampère’s law that the line integral of the
magnetic field taken once toroidally around the torus is
proportional to the linked current of free charges:I

C
B · dr ¼ μ0Ifree:

This conclusion follows from one of Maxwell’s equations,

∇ ×B ¼ μ0ðJfree þ∇ ×MÞ;

if the integration contourC is chosen to liewithin the plasma,
where the magnetization M vanishes. In other words,
permanent magnets cannot create a net toroidal magnetic
flux, but they can (perhaps surprisingly) create poloidal flux
and thus twist the magnetic field lines in a stellarator (though
not in an axisymmetric device such as a tokamak).

To see how this can be accomplished, we write the
magnetic field as a sum B ¼ Bc þBm, where

BcðrÞ ¼
μ0
4π

Z
coils

Jfreeðr0Þ ×
r − r0

jr − r0j3 dV
0

represents the field created by coils and Bm that from the
permanent magnets. The magnetizationM vanishes outside
a bounded domainΩ but is generally finite on the boundary
∂Ω and produces a magnetic field,

BmðrÞ ¼
μ0
4π

�Z
Ω
ð∇ ×MÞ × r − r0

jr − r0j3 dV
0

þ
Z
∂Ω
ðM × nÞ × r − r0

jr − r0j3 dS
0
�
; ð1Þ

where n is the unit vector pointing outward from Ω.
Our aim is to find a magnetization field M that creates a

desired magnetic field Bm within the plasma region, which
we denote by P. Since many different choices ofM produce
the same magnetic field, the solution is not unique and there
is considerable freedom to find the simplest one. Oneway to
solve the problem is to reduce it to one already routinely
solved in stellarator design. This problemwas first described
by Merkel [2] and proceeds from the observation that the
magnetic field in the plasma is uniquely determined by the
shape of the plasma boundary ∂P and the current and
pressure profiles within the plasma [3]. Suppose, therefore,
that a desired plasma surface ∂P is prescribed and consider
the problem of finding the surface current,

K ¼ n ×∇Φ; ð2Þ

on another toroidal surface ∂D, at some distance from the
plasma, that creates a magnetic field tangential to ∂P. In the
method of Merkel, this is done by choosing the scalar
function Φ on ∂D so as to minimize the surface integral:
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Z
∂P

jn · Bj2dS: ð3Þ
(This problem is ill posed but can be regularized in a number
of ways, for instance, by adding a term proportional to jKj2
to the integrand [4].) In conventional stellarator design, the
surface currentK thus found is subsequently discretized into
suitable magnetic-field coils, but these are in general very
complicated.
To see how permanent magnets may help, it is useful

to introduce a set of coordinates ðr; u; vÞ, where r ¼ r0 is
constant on ∂D and the other coordinates increase by unity
in the poloidal and toroidal directions, respectively. The
current potential Φ in Eq. (2) is in general of the form

Φðu; vÞ ¼ Juþ Ivþ Φ̃ðu; vÞ;
where Φ̃ðu; vÞ is a single-valued function on the surface ∂D
in contrast toΦ. (∇Φ is nevertheless single valued.) J and I
are constants proportional to the net currents in the toroidal
and poloidal directions, which thus govern the topology
of the coils. The constant J vanishes for modular coils, and
the constant I determines the net toroidal magnetic flux
inside ∂D.
If Merkel’s problem is modified slightly by taking this

net toroidal flux to be created by some given toroidal-field
coils, then the net poloidal current on ∂D can be taken to
vanish, I ¼ 0. In this representation, the magnetic field is
thus partly created by coils and partly by a surface current
on ∂D having the property that I ¼ 0. The problem of
finding a suitable magnetization field can then be reduced
to Merkel’s problem by choosing M in such a way that
∇ ×M vanishes withinΩ. The entire magnetization current
entering in Eq. (1) then appears as a surface current on ∂Ω:

K ¼ M × n:

As a result, M can be chosen as

M ¼ −∇½fðr; u; vÞΦ̃ðu; vÞ�; ð4Þ
where the function f is equal to unity on the part of the
boundary ∂Ω0 that faces the plasma, which we identify
with Merkel’s current-carrying surface ∂D. On the out-
ward-facing boundary ∂Ω1, we take f to vanish. For
instance, if the domainΩ is the region r0 < r < r1, we take

fðr0; u; vÞ ¼ 1;

fðr1; u; vÞ ¼ 0:

With this prescription, the magnetization skin current,

K ¼ n × ðΦ̃∇f þ f∇Φ̃Þ ¼ fn ×∇Φ̃; ð5Þ

becomes equal to that found by Merkel’s procedure on
r ¼ r0 and vanishes on r ¼ r1.
If the width r1 − r0 of the magnetization region is chosen

to be large, the required magnetization M ¼ jMj is

relatively small, but the volume occupied by magnets is
large. If this volume is instead chosen to be small,
the required magnetization is large. There is thus a basic
trade-off between using a large volume of weak magnets or a
small volume of strong ones. However, regardless of this
choice of volume, the largest magnetization will always
exceed the largest gradient of Φ̃ on the plasma-facing
surface:

Mmax ≥ max∂Ω0

j∇Φ̃j: ð6Þ

This condition places an important upper bound on the field
strength achievable by arranging the magnets according to
this method.
We now turn to a concrete example, an optimized

stellarator configuration published a few years ago [5],
which was originally obtained by deforming a classical
l ¼ 2 stellarator with aspect ratio A ¼ 5 into a shape that
makes the magnetic field quasiaxisymmetric. (This means
that the field strength is nearly independent of the toroidal
angle in Boozer or Hamada coordinates, which ensures
good orbit confinement [6–8].) In the original design, the
magnetic field was created by 20 nonplanar, modular coils
of 5 different types. Leaving permanent magnets to do most
of the plasma shaping, a new optimization was now carried
out where only 8 identical, planar, circular toroidal-field
coils proved necessary. In this optimization, the orientation
and positions of the coils were varied in such a way as
to minimize Eq. (6) under constraints ensuring that the
coils do not get too close to each other or to the plasma.
Accordingly, the resulting coils, which are shown in Fig. 1,
are situated comfortably far from the plasma, ensuring a

FIG. 1. Plasma boundary for ESTELL, a two-period quasisym-
metric stellarator [5], shown with the proposed simplified set of 8
identical and circular coils, all carrying the same current.
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relatively small toroidal ripple. The magnetization surface
current density in Eq. (5) required for plasma shaping is
displayed in Fig. 2 and is well within the range achievable
with Nd magnets. Here the device has been scaled to a field
strength on the magnetic axis of B0 ¼ 1 T and an average
major radius of R ¼ 1.4 m. The largest value of μ0Φ̃ is then
about 0.25 Tm and the required thickness of the magneti-
zation region is about 18 cm in the thickest regions, thus
providing clearance between coils and magnets [9].
The fidelity of the magnetic field is very good, as

indicated in Fig. 3, which compares flux surfaces with those
in the original design. The magnets are essential: the field
from the coils alone does not trace out magnetic surfaces.
The quality of the quasiaxisymmetry is such that the largest
nonaxisymmetric harmonic (in Boozer coordinates) of the
field strength is only about 1%. As a result, neoclassical
calculations indicate that the effective ripple (the standard
measure for transport in the so-called 1=ν regime [10])
remains below 1% throughout the plasma. Moreover,
magnetohydrodynamic Mercier stability is at least as good
as the original design in most of the plasma volume.
A concrete arrangement of the permanent magnets

follows upon specifying the function fðr; u; vÞ. An illus-
trative example is shown in Fig. 4, where we have chosen
the coordinate r to denote the distance from the surface
∂Ω0 and fðr; u; vÞ ¼ 1 − r=d, with d ¼ 18 cm. The figure
shows the magnetization vector M on the surface r ¼ d=2
as arrows centered on this surface. In certain toroidal and
poloidal positions, the required magnetization strength is
very small, thus enabling the installation of ports without
significantly disturbing the magnetic field.

Further optimization is both possible and desirable. The
procedure described above gives a magnetization field M
creating the desired magnetic field on the plasma surface
(as well as possible), but there are other possible choices of
M producing the same magnetic field with fewer or less
powerful magnets. Indeed, any field given by Eq. (1)
remains the same if M is replaced by M̃ ¼ Mþ∇χ,
where χ is an arbitrary function that vanishes on the
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FIG. 2. The quantity μ0jKj in Tesla, i.e., the magnetization
surface current density (5) multiplied by μ0, on a surface situated
10 cm from the plasma boundary shown in Figs. 1, 3, and 4. The
device has been scaled to a field strength on the magnetic axis
B0 ¼ 1 T and an average major radius R ¼ 1.4 m.

FIG. 4. Magnetization vector on a surface in the middle of the
magnetization region. This surface is shown in blue and the
magnetization vector is represented in the form of arrows
centered on this surface. The front half of each arrow is colored
red and the trailing half is green.
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FIG. 3. Flux surfaces produced by the coils and magnets shown
in Figs. 1 and 2, and those in the target for the original design,
calculated as a fixed-boundary variational moments equilibrium
code equilibrium.
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boundary ∂Ω. This gauge freedom to modify M without
changing the magnetic field can be used to minimize the
total squared magnetization:

W ¼
Z
Ω
M̃2dr ¼

Z
Ω
½M2 þ ð∇χÞ2 − 2χ∇ ·M�dr: ð7Þ

The function χ that minimizes W satisfies the Euler-
Lagrange equation,

∇2χ ¼ −∇ ·M; ð8Þ

and thus implies ∇ · M̃ ¼ 0 in Ω. The magnetization field
with the smallest value of W is thus divergence-free. Thus,
if a small value of W is desired, the magnetization field
found from Eq. (4) can be refined by adding a field ∇χ
obtained by solving Poisson’s equation (8) with χ ¼ 0 on
the boundary.
An important technical limit on permanent magnets is

given by the maximum value of μ0M, which should not
exceed about 1.4 T for Nd magnets. To stay below this
limit, one could, instead of minimizing W, seek to reduce
the maximum value ofM within Ω subject to the constraint
that Eq. (1) should be equal to the desired magnetic field on
the plasma boundary. It is useful to note that the resulting
magnetization strength cannot have any isolated maxima,
for any such maximum can be removed by a gauge
transformation. To see this, suppose that M has a local
maximum at r ¼ rmax and consider the field

M̃ ¼ M − ϵ∇S;
where ϵ is a small positive number and SðrÞ any differ-
entiable function with bounded derivatives such that

M ·∇S > 0

in a neighborhood of rmax and SðrÞ ¼ 0 on the boundary
∂Ω. As before, M̃ produces the same magnetic field
as M, but

M̃2 ¼ M2 − 2ϵM ·∇Sþ ϵ2j∇Sj2

is smaller than M2 in a neighborhood of rmax if ϵ is
sufficiently small. This result suggests (but does not quite
prove) that it should be sufficient to look for magnetization
fields with constant amplitude everywhere, which is useful
since it reduces the number of free functions in the
optimization from three to two and makes optimal use
of the available magnetization. (The thickness of the
magnetization region can then be reduced correspond-
ingly.) Simple estimates suggest that this kind of optimi-
zation should be able to increase the achievable field
strength by about a factor of 2 as compared with Eq. (4)
[11]. (As in the case of “one-sided”’ magnets, the most
efficient use of the magnetization is made if the flux is

directed toward one side of the magnetization region [12].)
Moreover, one finds that, using this type of optimization,
the magnetization region can practically be reduced to zero
in large regions on the outboard side of the torus, thus
providing plenty of room for ports [15].
Even if the magnitude of the vector M is made constant

throughout the magnetization region, its direction will still
vary. Any discretization of the magnetic material will thus
cause field errors [13,14], but these can be made arbitrarily
small by making the individual magnets small. The
resulting magnetic ripple is exponentially small if the
discretization length scale is smaller than the distance to
the plasma.
In conclusion, we have shown that it is possible, at least

in principle, to use permanent magnets to shape a stellarator
plasma. Such magnets cannot produce toroidal magnetic
flux, but they can create poloidal flux and rotational
transform of the magnetic field, and thus help to simplify
stellarator design. In contrast to coils, they can easily be
arranged in complicated patterns and do not require power
supplies or cooling. They do, of course, suffer from other
disadvantages, such as limitations in field strength, non-
tunability, and the possibility of demagnetization. A high-
performance stellarator needs a magnetic field much larger
than that which present-day permanent magnets can pro-
duce, but this does not prevent permanent magnets with
μ0M ≤ 1.4 T to be useful, since such magnets only need to
produce a fraction of the full field. How large this fraction is
depends on how much coil complexity can be tolerated.
The magnets retain their magnetization in fields up to
5–7 T, and further advances in magnet technology are likely
to lead to enhanced performance in the future. Moreover,
permanent magnets may bring practical advantages in
addition to coil simplification. It would be useful to retain
enough flexibility in the positioning of the magnets that
they could be rotated and repositioned in order to adjust for
field imperfections or to create a variety of different
magnetic configurations in a single device. In a stellarator
with superconducting coils, it could prove possible to
reduce the number of coils sufficiently that each coil is
situated in its own cryostat, which would tremendously
facilitate access to the plasma vacuum vessel.
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