Measurement of the CP Asymmetry in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ Decays

R. Aaij et al.*
(LHCb Collaboration)

(Received 17 October 2012; published 17 January 2013)

A measurement of the CP asymmetry in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decays is presented, based on 1.0 fb$^{-1}$ of $p p$ collision data recorded by the LHCb experiment during 2011. The measurement is performed in six bins of invariant mass squared of the $\mu^+ \mu^-$ pair, excluding the J/ψ and $\psi(2S)$ resonance regions. Production and detection asymmetries are removed using the $B^0 \rightarrow J/\psi K^{*0}$ decay as a control mode. The integrated CP asymmetry is found to be -0.072 ± 0.040 (stat) ± 0.005 (syst), consistent with the standard model.

DOI: 10.1103/PhysRevLett.110.031801
PACS numbers: 13.20.He, 11.30.Er, 12.15.Mm, 12.60.Jv

The decay $B^0 \rightarrow K^{*0}(\rightarrow K^+ \pi^-) \mu^+ \mu^-$ is a flavor changing neutral current process that proceeds via electroweak loop and box diagrams in the standard model (SM) [1]. The decay is highly suppressed in the SM and therefore weak loop and box diagrams in the standard model (SM) changing neutral current process that proceeds via electro-weak and box diagrams in the standard model (SM) changing neutral current process that proceeds via electro-weak and box diagrams in the standard model (SM) changing neutral current process that proceeds via electro-weak and box diagrams in the standard model (SM) changing neutral current process that proceeds via electro-weak and box diagrams in the standard model (SM) changing neutral current process that proceeds via electro-weak and box diagrams in the standard model (SM) changing neutral current process that proceeds via electro-weak and box diagrams in the standard model (SM) changing neutral current process that proceeds via electro-weak and box diagrams in

$$A_{\text{CP}} = \frac{\Gamma(B^0 \rightarrow \bar{K}^{*0} \mu^+ \mu^-) - \Gamma(B^0 \rightarrow K^{*0} \mu^+ \mu^-)}{\Gamma(B^0 \rightarrow \bar{K}^{*0} \mu^+ \mu^-) + \Gamma(B^0 \rightarrow K^{*0} \mu^+ \mu^-)},$$

where Γ is the decay rate and the initial flavor of the B meson is tagged by the charge of the kaon from the K^* decay. The CP asymmetry is predicted to be of the order 10^{-3} in the SM [3,4] but is sensitive to physics beyond the SM that changes the operator basis by modifying the mixture of the vector and axial-vector components [5,6]. Some models that include new phenomena enhance the observed CP asymmetry up to ± 0.15 [7]. The theoretical prediction within a given model has a small error as the form factor uncertainties, which are the dominant theoretical errors for the decay rate, cancel in the ratio.

The CP asymmetry in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decays has previously been measured by the Belle [8] and BABAR [9] collaborations, with both results consistent with the SM. The LHCb collaboration has recently demonstrated its potential in this area with the most precise measurement of A_{FB} [10], and in this Letter, the measurement of the CP asymmetry by LHCb is presented.

The LHCb detector [11] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector includes a high precision tracking system consisting of a silicon-strip vertex detector surrounding the $p p$ interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream. The combined tracking system has a momentum resolution $\Delta p/p$ that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c and an impact parameter resolution of 20 μm for tracks with high transverse momentum (p_T). Charged hadrons are identified using two ring-imaging Cherenkov detectors, photon, electron, and hadron candidates are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter, and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers. The trigger consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage that makes use of a full event reconstruction.

The simulated events used in this analysis are produced using the PYTHIA 6.4 generator [12], with a choice of parameters specifically configured for LHCb [13]. The EVTGEN package [14] describes the decay of the particles and the GEANT4 toolkit [15] simulates the detector response, implemented as described in Ref. [16]. QED radiative corrections are generated with the PHOTOS package [17].

The events used in the analysis are selected by a dedicated muon hardware trigger and then by one or more of a set of different muon and topological software triggers [18,19]. The hardware trigger requires the muons have p_T greater than 1.48 GeV/c, and the software trigger requires one of the final state particles to have both $p_T > 0.8$ GeV/c and impact parameter with respect to all $p p$ interaction vertices $> 100 \mu$m [19]. Triggered candidates are subject to the same two-stage selection as that used in Ref. [10]. The first stage is a cut-based selection, which includes requirements on the B^0 candidate’s vertex fit χ^2, flight distance and invariant mass, and each track’s impact.
parameters with respect to any interaction vertex, p_T and polar angle. Background from misidentified kaon and pion tracks is removed using information from the particle identification (PID) system, and muon tracks are required to have hits in the muon system. Finally, the production vertex of the B^0 candidate must lie within 5 mm of the beam axis in the transverse directions, and within 200 mm of the average interaction position in the beam (z) direction.

In the second stage, the candidates must pass a multivariate selection that uses a boosted decision tree [20] that implements the AdaBoost algorithm [21]. This is a tighter selection that takes into account other variables including the decay time and flight direction of the B^0 candidates, the p_T of the hadrons, measures of the track and vertex quality, and PID information for the daughter tracks. For the rest of the Letter, the inclusion of charge conjugate modes is implied unless explicitly stated.

In order to obtain a clean sample of $B^0 \to K^{*0} \mu^+ \mu^-$ decays, the $c \bar{c}$ resonant decays $B^0 \to J/\psi K^{*0}$ and $B^0 \to \psi(2S)K^{*0}$ are removed by excluding events with $\mu^+ \mu^-$ invariant mass, $m_{\mu^+ \mu^-}$, satisfying $2.95 < m_{\mu^+ \mu^-} < 3.18\text{ GeV}/c^2$ or $3.59 < m_{\mu^+ \mu^-} < 3.77\text{ GeV}/c^2$. If $m_{K^{*+} \pi^- \mu^+ \mu^-} < 5.23\text{ GeV}/c^2$, then the vetoes are extended downwards by 0.15 GeV/c^2 to remove the radiative tails of the resonances. Backgrounds involving misidentified particles are vetoed using cuts on the masses of the B^0 and K^{*0} mesons and the $\mu^+ \mu^-$ pair, as well as using the PID information for the daughter particles. These include $B^0 \to J/\psi K^{*0}$ candidates in which a kaon has been misidentified as a pion, $B^0 \to J/\psi K^{*0}$ candidates where a hadron is swapped with a muon, and $B^0 \to K^{+} \mu^+ \mu^-$ candidates that combine with a random low momentum pion. The vetoes are described fully in Ref. [10]. A_{CP} may be diluted by $B^0 \to K^{*0} \mu^+ \mu^-$ candidates with the kaon and pion misidentified as each other, which is estimated as 0.8% of the $B^0 \to K^{*0} \mu^+ \mu^-$ yield using simulated events. All $B^0\bar{B}^0$ candidates must have a mass in the range 5.15–5.80 GeV/c^2; the tight low mass edge of this window serves to remove background from partially reconstructed B meson decays. All K^{*0} candidates must have an invariant mass of the kaon-pion pair within 0.1 GeV/c^2 of the nominal $K^{*0}(892)$ mass. A proton veto, using PID information from a neural network, is also applied to remove background from A_b decays, where a proton in the final state is misidentified as a kaon or pion in the $B^0 \to K^{*0} \mu^+ \mu^-$ decay.

Approximately 2% of selected events contain two $B^0 \to K^{*0} \mu^+ \mu^-$ candidates that have tracks in common. The majority of these candidates arise from swapping the assignment of the kaon and pion hypothesis. As the charges of the kaon and pion tag the flavor of the B meson these duplicate candidates can bias the measured value of A_{CP}. This is accounted for by randomly removing one of the two candidates from the sample. This process is repeated many times over the full sample with a different random seed in each case and the average measured value of A_{CP} is taken as the result.

An accurate measurement of A_{CP} requires that the differences in the production rates (R) of B^0 / \bar{B}^0 mesons and detection efficiencies (ϵ) between the $B^0 \to K^{*0} \mu^+ \mu^-$ and $\bar{B}^0 \to \bar{K}^{*0} \mu^+ \mu^-$ modes be accounted for.

Assuming all asymmetries are small, the raw measured asymmetry may be expressed as

$$A_{\text{RAW}} = A_{CP} + \kappa A_p + A_D,$$

where the production asymmetry, which is of the order of 1% [22], is defined as $A_p \equiv [R(B^0) - R(\bar{B}^0)]/[R(B^0) + R(\bar{B}^0)]$ and the detection asymmetry is $A_D \equiv [\epsilon(B^0) - \epsilon(\bar{B}^0)]/[\epsilon(B^0) + \epsilon(\bar{B}^0)]$. The production asymmetry is diluted through B^0 / \bar{B}^0 oscillations by a factor κ

$$\kappa = \frac{\int_0^{\infty} \epsilon(t) e^{-t/\Gamma} \cos \Delta m t dt}{\int_0^{\infty} \epsilon(t) e^{-t/\Gamma} dt},$$

where t, Γ, and Δm are the decay time, mean decay rate, and mass difference between the light and heavy eigenstates of the B^0 meson, respectively. The quantity A_p is dominated by the $K^+ \pi^- / K^- \pi^+$ detection asymmetry that arises due to left-right asymmetries in the LHCb detector and different interactions of positively and negatively charged tracks with the detector material. The left-right asymmetry is canceled by taking an average with equal weights of the CP asymmetries measured in two independent data samples with opposite polarities of the LHCb dipole magnet. These data samples correspond to 61% and 39% of the total data sample.

The production and interaction asymmetries are corrected for using the $B^0 \to J/\psi K^{*0}$ decay mode as a control channel. Since $B^0 \to K^{*0} \mu^+ \mu^-$ and $B^0 \to J/\psi K^{*0}$ decays have the same final state and similar kinematics, the measured raw asymmetry for $B \to J/\psi K^{*0}$ decays may be simply expressed as $A_{\text{RAW}}(B^0 \to J/\psi K^{*0}) = \kappa A_p + A_D$, in the absence of a CP asymmetry. $B^0 \to J/\psi K^{*0}$ proceeds via a $b \to c \bar{c} s$ transition, as does the decay mode $B^+ \to J/\psi K^+$, and hence should have a CP asymmetry similar to $A_{CP}(B^+ \to J/\psi K^+) = (1 \pm 7) \times 10^{-3}$ [23,24]. For this analysis, it is assumed that $A_{CP}(B^0 \to J/\psi K^{*0}) = 0$. The CP asymmetry in $B^0 \to K^{*0} \mu^+ \mu^-$ decays is then calculated as

$$A_{CP} = A_{\text{RAW}}(B^0 \to K^{*0} \mu^+ \mu^-) - A_{\text{RAW}}(B^0 \to J/\psi K^{*0}).$$

Noncanceling asymmetries due to differences between the kinematics of $B^0 \to K^{*0} \mu^+ \mu^-$ and $B^0 \to J/\psi K^{*0}$ decays are considered systematic effects.

The full data sample, containing approximately 900 $B^0 \to K^{*0} \mu^+ \mu^-$ signal decays, is split into the six bins of $\mu^+ \mu^-$ invariant mass squared (q^2) used by the LHCb, Belle, and CDF angular analyses [8,10,25]. An additional bin of $1 < q^2 < 6 \text{ GeV}^2/c^4$ is used, to be compared to the
The simultaneous fit in each signal region is performed using a simultaneous unbinned maximum-likelihood fit to the mass distributions in the range 5.15–5.80 GeV/c^2. This fit returns two values of q^2 for each signal region, split between the initial particles B^0 and B^0, the decay modes B^0 → K^{*0} μ^+ μ^- and B^0 → J/ψ K^{*0}, and magnet polarity, where the B^0 → J/ψ K^{*0} sample is common to all q^2 bins. This fit returns two values of A_{CP}, one for each magnet polarity, and an average with equal weights is made to find the value of A_{CP} in that q^2 bin. An integrated value of A_{CP} over all q^2 is also calculated.

The signal invariant mass distributions for the B^0 → K^{*0} μ^+ μ^- and B^0 → J/ψ K^{*0} decays are modeled using the sum of two Crystal Ball functions [26] with common peak and tail parameters but different widths. The values of the tail parameters are determined from fits to simulated events and fixed in the fit. Combinatorial background arising from the random misassociation of tracks to form a B^0 candidate is modeled using an exponential function. The B^0 → J/ψ K^{*0} fit also accounts for a peaking B^0 → J/ψ K^{*0} contribution, which has the same shape as the signal and an expected yield that is (0.7 ± 0.2)% of that of B^0 → J/ψ K^{*0} [27]. In the simultaneous fit, the signal shape is the same for the two modes, but the signal and background yields and the exponential background

<table>
<thead>
<tr>
<th>q^2 region (GeV^2/c^4)</th>
<th>Multiple cands.</th>
<th>Residual asymmetries</th>
<th>μ^± detection asymmetry</th>
<th>Signal model</th>
<th>Mass resol.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 < q^2 < 2.00</td>
<td>0.002</td>
<td>0.007</td>
<td>0.005</td>
<td>0.005</td>
<td>0.001</td>
<td>0.010</td>
</tr>
<tr>
<td>2.00 < q^2 < 4.30</td>
<td>0.006</td>
<td>0.007</td>
<td>0.006</td>
<td>0.007</td>
<td>0.010</td>
<td>0.016</td>
</tr>
<tr>
<td>4.30 < q^2 < 8.68</td>
<td>0.004</td>
<td>0.003</td>
<td>0.006</td>
<td>0.004</td>
<td>0.003</td>
<td>0.010</td>
</tr>
<tr>
<td>10.09 < q^2 < 12.86</td>
<td>0.003</td>
<td>0.007</td>
<td>0.009</td>
<td>0.001</td>
<td>0.002</td>
<td>0.011</td>
</tr>
<tr>
<td>14.18 < q^2 < 16.00</td>
<td>0.001</td>
<td>0.006</td>
<td>0.007</td>
<td>0.001</td>
<td>0.001</td>
<td>0.009</td>
</tr>
<tr>
<td>16.00 < q^2 < 20.00</td>
<td>0.003</td>
<td>0.005</td>
<td>0.003</td>
<td>0.003</td>
<td>0.009</td>
<td>0.012</td>
</tr>
<tr>
<td>1.00 < q^2 < 6.00</td>
<td>0.001</td>
<td>0.006</td>
<td>0.005</td>
<td>0.002</td>
<td>0.003</td>
<td>0.009</td>
</tr>
<tr>
<td>0.05 < q^2 < 2.00</td>
<td>0.002</td>
<td>0.002</td>
<td>0.005</td>
<td>0.001</td>
<td>0.001</td>
<td>0.005</td>
</tr>
</tbody>
</table>
parameter may vary. Figure 1 shows the mass fit to the $B^0 \to K^{*0} \mu^+ \mu^-$ decay in the full q^2 range.

Many sources of systematic uncertainty cancel in the difference of the raw asymmetries between $B^0 \to K^{*0} \mu^+ \mu^-$ and $B^0 \to J/\psi K^{*0}$ decays and in the average of CP asymmetries measured using data recorded with opposite magnet polarities. However, systematic uncertainties can arise from residual noncanceling asymmetries due to the different kinematic behavior of $B^0 \to K^{*0} \mu^+ \mu^-$ and $B^0 \to J/\psi K^{*0}$ decays. The effect is estimated by reweighting $B^0 \to J/\psi K^{*0}$ candidates so that their kinematic variables are distributed in the same way as for $B^0 \to K^{*0} \mu^+ \mu^-$ candidates. The value of $\mathcal{A}_{\text{RAW}}(B^0 \to J/\psi K^{*0})$ is then calculated for these reweighted events and the difference from the default value is taken as the systematic uncertainty. This procedure is carried out separately for a number of quantities including the p, p_T, and pseudorapidity of the B^0 and the K^{*0} mesons. The total systematic uncertainty associated with the different kinematic behavior of the two decays is calculated by adding each individual contribution in quadrature. This is conservative, as many of the variables are correlated.

The random removal of multiple candidates discussed above also introduces a systematic uncertainty on \mathcal{A}_{CP}. The uncertainty on the mean value of \mathcal{A}_{CP} from the ten different random removals is taken as the systematic uncertainty.

The forward-backward asymmetry in $B^0 \to K^{*0} \mu^+ \mu^-$ decays [10], which varies as a function of q^2, causes positive and negative muons to have different momentum distributions. Different detection efficiencies for positive and negative muons introduce an asymmetry that cannot be accounted for by the $B^0 \to J/\psi K^{*0}$ decay, which does not have a comparable forward-backward asymmetry. The selection efficiencies for positive and negative muons are evaluated using muons from J/ψ decay in data and the resulting asymmetry in the selected $B^0 \to K^{*0} \mu^+ \mu^-$ sample is calculated in each q^2 bin.

A number of possible effects due to the choice of model for the mass fit are considered. The signal model is replaced with a sum of two Gaussian distributions and a possible difference in the mass resolution for $B^0 \to K^{*0} \mu^+ \mu^-$ and $B^0 \to J/\psi K^{*0}$ decays is investigated by allowing the width of the $B^0 \to K^{*0} \mu^+ \mu^-$ signal peak to vary in a range of 0.7–1.3 times that of the $B^0 \to J/\psi K^{*0}$ model. These systematic uncertainties are summarized in Table I. As a further cross-check, \mathcal{A}_{CP} is calculated using a weighted average of the measurements from the six q^2 bins and the result is found to be consistent with that obtained from the integrated data set.

The results of the full \mathcal{A}_{CP} fit are presented in Table II and Fig. 2. The raw asymmetry in $B^0 \to J/\psi K^{*0}$ decays is measured as

$$\mathcal{A}_{\text{RAW}}(B^0 \to J/\psi K^{*0}) = -0.0110 \pm 0.0032 \pm 0.0006,$$

where the first uncertainty is statistical and the second is systematic. The CP asymmetry integrated over the full q^2 range is calculated and found to be

$$\mathcal{A}_{CP}(B^0 \to K^{*0} \mu^+ \mu^-) = -0.072 \pm 0.040 \pm 0.005.$$

The result is consistent with previous measurements made by Belle [8], $\mathcal{A}_{CP}(B \to K^* l^+ l^-) = -0.10 \pm 0.10 \pm 0.01$, and BABAR [9], $\mathcal{A}_{CP}(B \to K^* l^+ l^-) = 0.03 \pm 0.13 \pm 0.01$. This measurement is significantly more

![FIG. 2 (color online). Fitted value of \mathcal{A}_{CP} in $B^0 \to K^{*0} \mu^+ \mu^-$ decays in bins of the $\mu^+ \mu^-$ invariant mass squared (q^2). The red vertical lines mark the charmonium vetoes. The points are plotted at the mean value of q^2 in each bin. The uncertainties on each \mathcal{A}_{CP} value are the statistical and systematic uncertainties added in quadrature. The dashed line corresponds to the q^2 integrated value, and the grey band is the 1σ uncertainty on this value.](031801-4)
precise than all other measurements of \mathcal{A}_{CP} in $B^0 \to K^{*0} \mu^+ \mu^-$ decays to date.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ, and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF, and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); ANCS/IFA (Romania); MinES, Rosatom, RFBR, and NRC “Kurchatov Institute” (Russia); MinECo, XuntaGal, and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge support from the LHCb Collaboration, the LHC. We thank the technical and administrative staff at accelerator departments for the excellent performance of source software packages that we depend on.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ, and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF, and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); ANCS/IFA (Romania); MinES, Rosatom, RFBR, and NRC “Kurchatov Institute” (Russia); MinECo, XuntaGal, and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge support received from the ERC under FP7. The Tier1 computing centers are supported by IN2P3 (France), KIT, and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), CIEMAT, IFAE, and UAB (Spain), and GridPP (United Kingdom). We are thankful for the computing resources put at our disposal by Yandex LLC (Russia), as well as to the communities behind the multiple open source software packages that we depend on.

PRL 110, 031801 (2013) 1

C. Santamarina Rios,34 R. Santinelli,35 E. Santovetti,21,k M. Sapunov,6 A. Sarti,18,l C. Satriano,22,m A. Satta,21
M. Savrie,16,e D. Savrina,28 P. Schaack,50 M. Schiller,39 H. Schindler,35 S. Schleich,9 M. Schlupp,9 M. Schmelling,10
B. Schmidt,35 O. Schneider,36 A. Schopper,35 M.-H. Schune,7 R. Schwemmer,35 B. Sciascia,18 A. Sciubba,18,l
M. Seco,34 A. Semennikov,28 K. Senderowska,24 I. Sepp,50 N. Serra,37 J. Serrano,6 P. Seyfert,11 M. Shapkin,32
A. Shires,50 R. Silva Coutinho,45 T. Skwarnicki,53 N. A. Smith,49 E. Smith,52,46 M. Smith,51 K. Sobczak,5
F. J. P. Soler,48 R. Soomro,43 F. Soomro,43 B. Souza,43 B. Spaan,9 A. Sparkes,47 P. Spradlin,48
F. Stagni,35 S. Stahl,11 O. Steinkamp,37 S. Stoica,26 S. Stone,53 B. Storaci,38 M. Straticiuc,26 U. Straumann,37
V. K. Subbiah,35 S. Swientek,9 M. Szczekowski,25 P. Szczypka,36,35 T. Szumlak,24 S. T'Jampens,4 M. Teklishyn,7
E. Teodorescu,26 F. Teubert,35 C. Thomas,52 E. Thomas,35 J. van Tilburg,11 V. Tisserand,4 M. Tobin,37 S. Tolk,39
S. Topp-Joergensen,52 N. Torr,52 E. Tournefier,4,50 S. Tourneur,36 M. T. Tran,36 A. Tsaregorodtsev,6 N. Tuning,38
P. Vazquez Regueiro,34 S. Vecchi,16 J. J. Velthuis,43 M. Veltri,17,g G. Veneziano,36 M. Vesterinen,35 B. Viaud,7
I. Videau,7 D. Vieira,2 X. Vilasis-Cardona,33,n J. Visniakov,34 A. Vollhardt,37 D. Volyanskyy,10 D. Voong,43
A. Vorobyev,27 V. Vorobyev,31 H. Voss,10 C. Vol,55 R. Waldi,55 R. Wallace,12 S. Wandermoth,11 J. Wang,53
D. R. Ward,44 N. K. Watson,42 A. D. Webber,51 D. Websdale,50 M. Whitehead,35 J. Wicht,35 D. Wiedner,11
L. Wiggers,38 G. Wilkinson,52 M. P. Williams,45,46 M. Williams,50,o F. F. Wilson,46 J. Wishahi,9 M. Witek,23,35
W. Witzeling,35 J. A. Wood,44 S. Wright,9 S. Wu,3 K. Wylie,35 Y. Xie,47 F. Xing,52 Z. Xing,53 Z. Yang,3
R. Young,47 X. Yuan,3 O. Yushchenko,32 M. Zangoli,14 M. Zavertyaev,10,a F. Zhang,7 L. Zhang,53 W. C. Zhang,12
Y. Zhang,3 A. Zhelezov,11 L. Zhong,3 and A. Zvyagin35

(LHCb Collaboration)

1 Centro Brasileiro de Pesquisas Fısicas (CBPF), Rio de Janeiro, Brazil
2 Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3 Center for High Energy Physics, Tsinghua University, Beijing, China
4 LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
5 Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
7 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8 LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
9 Fakultäts Physik, Technische Universität Dortmund, Dortmund, Germany
10 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
11 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12 School of Physics, University College Dublin, Dublin, Ireland
13 Sezione INFN di Bari, Bari, Italy
14 Sezione INFN di Bologna, Bologna, Italy
15 Sezione INFN di Catania, Catania, Italy
16 Sezione INFN di Ferrara, Ferrara, Italy
17 Sezione INFN di Firenze, Firenze, Italy
18 LaboratoriNazionali dell’INFN di Frascati, Frascati, Italy
19 Sezione INFN di Genova, Genova, Italy
20 Sezione INFN di Milano Bicocca, Milano, Italy
21 Sezione INFN di Roma Tor Vergata, Roma, Italy
22 Sezione INFN di Roma La Sapienza, Roma, Italy
23 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
24 AGH University of Science and Technology, Kraków, Poland
25 National Center for Nuclear Research (NCBJ), Warsaw, Poland
26 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
27 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
28 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
29 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
30 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
31 Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
32 Institute for High Energy Physics (IHEP), Protvino, Russia
33 Universitat de Barcelona, Barcelona, Spain
34 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
35 European Organization for Nuclear Research (CERN), Geneva, Switzerland
36 Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
37 Physik-Institut, Universitat Zuerich, Zuerich, Switzerland
38 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
39 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
40 NSC Kharkov Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
41 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
42 University of Birmingham, Birmingham, United Kingdom
43 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
44 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
45 Department of Physics, University of Warwick, Coventry, United Kingdom
46 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
47 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
48 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
49 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
50 Imperial College London, London, United Kingdom
51 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
52 Department of Physics, University of Oxford, Oxford, United Kingdom
53 Syracuse University, Syracuse, New York, USA
54 Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
55 Institut fur Physik, Universitaet Rostock, Rostock, Germany Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, Heidelberg, Germany

a Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
b Also at Universita di Firenze, Firenze, Italy.
c Also at Universita della Basilicata, Potenza, Italy.
d Also at Universita di Modena e Reggio Emilia, Modena, Italy.
e Also at Universita di Milano Bicocca, Milano, Italy.
f Also at Universita di Bologna, Bologna, Italy.
g Also at Universita di Roma Tor Vergata, Roma, Italy.
h Also at Universita di Genova, Genova, Italy.
i Also at Universita di Ferrara, Ferrara, Italy.
j Also at Universita di Cagliari, Cagliari, Italy.
k Also at Hanoi University of Science, Hanoi, Viet Nam.
l Also at Universita di Bari, Bari, Italy.
m Also at Universita di Roma La Sapienza, Roma, Italy.
n Also at Universita di Urbino, Urbino, Italy.
o Also at Massachusetts Institute of Technology, Cambridge, MA, USA.
p Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.