Symmetry of the Superconducting Order Parameter in Frustrated Systems Determined by the Spatial Anisotropy of Spin Correlations

B. J. Powell and Ross H. McKenzie
Phys. Rev. Lett. 98, 027005 – Published 12 January 2007

Abstract

We study the resonating valence bond theory of the Hubbard-Heisenberg model on the half-filled anisotropic triangular lattice. Varying the frustration changes the wave vector of maximum spin correlation in the Mott insulating phase. This, in turn, changes the symmetry of the superconducting state that occurs at the boundary of the Mott insulating phase. We propose that this physics is realized in several families of quasi-two-dimensional organic superconductors.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 15 August 2006

DOI:https://doi.org/10.1103/PhysRevLett.98.027005

©2007 American Physical Society

Authors & Affiliations

B. J. Powell and Ross H. McKenzie

  • Department of Physics, University of Queensland, Brisbane, Queensland 4072, Australia

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 98, Iss. 2 — 12 January 2007

Reuse & Permissions
Access Options
Collection
Heating up of Superconductors
January 27, 2017

This collection marks the 30th anniversary of the discovery of high-temperature superconductors. The papers selected highlight some of the advances that have been made to date, both in understanding why these compounds behave in the way they do, and in utilizing them in applications. The papers included in the collection have been made free to read.

APS and CERN Sign Open Access Agreement for SCOAP3

APS and CERN, the host organization of SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics), have signed an agreement to make the high-energy physics (HEP) articles published in three leading APS journals open access beginning January 1, 2018. This agreement acts to support the publishing of open access content for wider benefit of the HEP community.

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×