Magnetic and Electric Phase Control in Epitaxial EuTiO3 from First Principles

Craig J. Fennie and Karin M. Rabe
Phys. Rev. Lett. 97, 267602 – Published 29 December 2006

Abstract

We propose a design strategy—based on the coupling of spins, optical phonons, and strain—for systems in which magnetic (electric) phase control can be achieved by an applied electric (magnetic) field. Using first-principles density-functional theory calculations, we present a realization of this strategy for the magnetic perovskite EuTiO3.

  • Figure
  • Figure
  • Figure
  • Received 26 July 2006

DOI:https://doi.org/10.1103/PhysRevLett.97.267602

©2006 American Physical Society

Authors & Affiliations

Craig J. Fennie and Karin M. Rabe

  • Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 97, Iss. 26 — 31 December 2006

Reuse & Permissions
Access Options
Collection
Heating up of Superconductors
January 27, 2017

This collection marks the 30th anniversary of the discovery of high-temperature superconductors. The papers selected highlight some of the advances that have been made to date, both in understanding why these compounds behave in the way they do, and in utilizing them in applications. The papers included in the collection have been made free to read.

APS and CERN Sign Open Access Agreement for SCOAP3

APS and CERN, the host organization of SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics), have signed an agreement to make the high-energy physics (HEP) articles published in three leading APS journals open access beginning January 1, 2018. This agreement acts to support the publishing of open access content for wider benefit of the HEP community.

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×