• Open Access

Vortex String Formation in Black Hole Superradiance of a Dark Photon with the Higgs Mechanism

William E. East
Phys. Rev. Lett. 129, 141103 – Published 30 September 2022
PDFHTMLExport Citation

Abstract

Black hole superradiance, which only relies on gravitational interactions, can provide a powerful probe of the existence of ultralight bosons that are weakly coupled to ordinary matter. However, as a boson cloud grows through superradiance, nonlinear effects from interactions with itself or other fields may become important. As a representative example of this, we use nonlinear evolutions to study black hole superradiance of a vector boson that attains a mass, via a coupling to a complex scalar, through the Higgs mechanism. For the cases considered, we find that the superradiant instability can lead to a transient period where the scalar field reaches its symmetry restoration value, leading to the formation of closed vortex strings, the temporary disruption of the exponential growth of the cloud, and an explosive outburst of energy. After the cloud loses sufficient mass, the superradiant growth resumes, and the cycle repeats. Thus, the black hole will be spun down but, potentially, at a much lower rate compared to when nonlinear effects are unimportant and with the liberated energy going primarily into bosonic radiation instead of gravitational waves.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 12 May 2022
  • Revised 18 July 2022
  • Accepted 12 August 2022

DOI:https://doi.org/10.1103/PhysRevLett.129.141103

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

William E. East*

  • Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

  • *weast@perimeterinstitute.ca

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 129, Iss. 14 — 30 September 2022

Reuse & Permissions

Operations in the APS Offices, including the Editorial Office, will pause starting Friday afternoon, December 23, 2022 through Monday, January 2, 2023. Journal articles will continue to be published December 23 - 30, 2022. No articles will be published on January 2, 2023. Submissions, referee reports, and other correspondence will be received and timestamped for processing. Normal business operations will resume on Tuesday, January 3, 2023. We appreciate your understanding as processing and response times will be delayed.

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×