- Open Access
Thermal Axion Production at Low Temperatures: A Smooth Treatment of the QCD Phase Transition
Phys. Rev. Lett. 128, 152001 – Published 13 April, 2022
DOI: https://doi.org/10.1103/PhysRevLett.128.152001
Abstract
We study thermal axion production around the confinement scale. At higher temperatures, we extend current calculations to account for the masses of heavy quarks, whereas we quantify production via hadron scattering at lower temperatures. Matching our results between the two opposite regimes provides us with a continuous axion production rate across the QCD phase transition. We employ such a rate to quantify the axion contribution to the effective number of neutrino species.
Physics Subject Headings (PhySH)
Article Text
References (95)
- N. Aghanim et al. (Planck Collaboration), Astron. Astrophys. 641, A6 (2020).
The number of effective neutrino species is the sum of the standard model contribution and the new physics one, , with the former due to noninstantaneous neutrino decoupling [3, 4, 5, 6].
- G. Mangano, G. Miele, S. Pastor, and M. Peloso, Phys. Lett. B 534, 8 (2002).
- J. J. Bennett, G. Buldgen, M. Drewes, and Y. Y. Y. Wong, J. Cosmol. Astropart. Phys. 03 (2020) 003.
- K. Akita and M. Yamaguchi, J. Cosmol. Astropart. Phys. 08 (2020) 012.
- J. J. Bennett, G. Buldgen, P. F. de Salas, M. Drewes, S. Gariazzo, S. Pastor, and Y. Y. Y. Wong, J. Cosmol. Astropart. Phys. 04 (2021) 073.
- C. Brust, D. E. Kaplan, and M. T. Walters, J. High Energy Phys. 12 (2013) 058.
- D. Baumann, D. Green, and B. Wallisch, Phys. Rev. Lett. 117, 171301 (2016).
- K. N. Abazajian et al. (CMB-S4 Collaboration), arXiv:1610.02743.
- K. Abazajian et al., arXiv:1907.04473.
- F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
- S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
- R. D. Peccei and H. R. Quinn, Nuovo Cimento A 41, 309 (1977).
- R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).
- J. Preskill, M. B. Wise, and F. Wilczek, Phys. Lett. 120B, 127 (1983).
- L. F. Abbott and P. Sikivie, Phys. Lett. 120B, 133 (1983).
- M. Dine and W. Fischler, Phys. Lett. 120B, 137 (1983).
- D. J. E. Marsh, Phys. Rep. 643, 1 (2016).
- P. W. Graham, I. G. Irastorza, S. K. Lamoreaux, A. Lindner, and K. A. van Bibber, Annu. Rev. Nucl. Part. Sci. 65, 485 (2015).
- I. G. Irastorza and J. Redondo, Prog. Part. Nucl. Phys. 102, 89 (2018).
- P. Sikivie, Rev. Mod. Phys. 93, 015004 (2021).
This cosmic axion background could be detected even with terrestrial experiments; see the recent Ref. [23].
- J. A. Dror, H. Murayama, and N. L. Rodd, Phys. Rev. D 103, 115004 (2021).
- J. E. Kim and G. Carosi, Rev. Mod. Phys. 82, 557 (2010); 91, 049902(E) (2019).
- L. Di Luzio, M. Giannotti, E. Nardi, and L. Visinelli, Phys. Rep. 870, 1 (2020).
- M. S. Turner, Phys. Rev. Lett. 59, 2489 (1987); 60, 1101(E) (1988).
- E. Masso, F. Rota, and G. Zsembinszki, Phys. Rev. D 66, 023004 (2002).
- P. Graf and F. D. Steffen, Phys. Rev. D 83, 075011 (2011).
- A. Salvio, A. Strumia, and W. Xue, J. Cosmol. Astropart. Phys. 01 (2014) 011.
- R. Z. Ferreira and A. Notari, Phys. Rev. Lett. 120, 191301 (2018).
- F. Arias-Aragón, F. D’Eramo, R. Z. Ferreira, L. Merlo, and A. Notari, J. Cosmol. Astropart. Phys. 11 (2020) 025.
- F. Arias-Aragón, F. D’Eramo, R. Z. Ferreira, L. Merlo, and A. Notari, J. Cosmol. Astropart. Phys. 03 (2021) 090.
- Z. G. Berezhiani, A. S. Sakharov, and M. Y. Khlopov, Sov. J. Nucl. Phys. 55, 1063 (1992).
- S. Chang and K. Choi, Phys. Lett. B 316, 51 (1993).
- S. Hannestad, A. Mirizzi, and G. Raffelt, J. Cosmol. Astropart. Phys. 07 (2005) 002.
- F. D’Eramo, L. J. Hall, and D. Pappadopulo, J. High Energy Phys. 11 (2014) 108.
- M. Kawasaki, M. Yamada, and T. T. Yanagida, Phys. Rev. D 91, 125018 (2015).
- R. Z. Ferreira, A. Notari, and F. Rompineve, Phys. Rev. D 103, 063524 (2021).
- L. Di Luzio, G. Martinelli, and G. Piazza, Phys. Rev. Lett. 126, 241801 (2021).
- P. Carenza, M. Lattanzi, A. Mirizzi, and F. Forastieri, J. Cosmol. Astropart. Phys. 07 (2021) 031.
- J. E. Kim, Phys. Rev. Lett. 43, 103 (1979).
- M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B166, 493 (1980).
- W. A. Bardeen, S. H. H. Tye, and J. A. M. Vermaseren, Phys. Lett. 76B, 580 (1978).
- G. Grilli di Cortona, E. Hardy, J. Pardo Vega, and G. Villadoro, J. High Energy Phys. 01 (2016) 034.
- M. Gorghetto and G. Villadoro, J. High Energy Phys. 03 (2019) 033.
We adopt the conventions of Ref. [44] with numerical value of the pion decay constant .
- T. Fischer, S. Chakraborty, M. Giannotti, A. Mirizzi, A. Payez, and A. Ringwald, Phys. Rev. D 94, 085012 (2016).
- J. H. Chang, R. Essig, and S. D. McDermott, J. High Energy Phys. 09 (2018) 051.
- P. Carenza, T. Fischer, M. Giannotti, G. Guo, G. Martínez-Pinedo, and A. Mirizzi, J. Cosmol. Astropart. Phys. 10 (2019) 016; 05 (2020) E01.
- Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo, Nature (London) 443, 675 (2006).
- A. Bazavov et al. (HotQCD Collaboration), Phys. Rev. D 90, 094503 (2014).
Ref. [53] applied the same method to compute the sterile neutrino production rate across the QCDPT.
- T. Venumadhav, F.-Y. Cyr-Racine, K. N. Abazajian, and C. M. Hirata, Phys. Rev. D 94, 043515 (2016).
- F. D’Eramo, F. Hajkarim, and S. Yun, J. High Energy Phys. 10 (2021) 224.
- E. Braaten and T. C. Yuan, Phys. Rev. Lett. 66, 2183 (1991).
This was first pointed out by Ref. [29].
- H. A. Weldon, Phys. Rev. D 42, 2384 (1990).
- C. Gale and J. I. Kapusta, Nucl. Phys. B357, 65 (1991).
- V. S. Rychkov and A. Strumia, Phys. Rev. D 75, 075011 (2007).
- M. L. Bellac, Thermal Field Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, England, 2011).
- M. Laine and A. Vuorinen, Lect. Notes Phys. 925, 1 (2016),
- K. G. Chetyrkin, J. H. Kuhn, and M. Steinhauser, Comput. Phys. Commun. 133, 43 (2000).
- F. Herren and M. Steinhauser, Comput. Phys. Commun. 224, 333 (2018).
- J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984).
- J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985).
- M. Srednicki, Nucl. Phys. B260, 689 (1985).
- H. Georgi, D. B. Kaplan, and L. Randall, Phys. Lett. 169B, 73 (1986).
We follow Ref. [44] and average over the values given in Refs. [69, 70, 71]. We use the central values of and in our analyzes, and the experimental uncertainties on their values do not affect our predictions for .
- G. M. de Divitiis, R. Frezzotti, V. Lubicz, G. Martinelli, R. Petronzio, G. C. Rossi, F. Sanfilippo, S. Simula, and N. Tantalo (RM123 Collaboration), Phys. Rev. D 87, 114505 (2013).
- R. Horsley, Y. Nakamura, H. Perlt, D. Pleiter, P. E. L. Rakow, G. Schierholz, A. Schiller, R. Stokes, H. Stüben, R. D. Young, and J. M. Zanotti, J. Phys. G 43, 10LT02 (2016).
- S. Basak et al. (MILC Collaboration), J. Phys. Conf. Ser. 640, 012052 (2015).
- V. Shtabovenko, R. Mertig, and F. Orellana, Comput. Phys. Commun. 207, 432 (2016).
- V. Shtabovenko, R. Mertig, and F. Orellana, Comput. Phys. Commun. 256, 107478 (2020).
- R. Hagedorn, Lect. Notes Phys. 221, 53 (1985).
- P. Huovinen and P. Petreczky, Nucl. Phys. A837, 26 (2010).
- E. Megias, E. Ruiz Arriola, and L. L. Salcedo, Nucl. Phys. B 234, 313 (2013).
We discuss in Ref. [54] theoretical uncertainties on due to the interpolation procedure and show how our predictions are robust.
The radiation bath energy density scales with the temperature as . The Hubble rate follows from the Friedmann equation, , where is the reduced Planck mass.
- F. D’Eramo, R. Z. Ferreira, A. Notari, and J. L. Bernal, J. Cosmol. Astropart. Phys. 11 (2018) 014.
- B. Fore and S. Reddy, Phys. Rev. C 101, 035809 (2020).
- P. Carenza, B. Fore, M. Giannotti, A. Mirizzi, and S. Reddy, Phys. Rev. Lett. 126, 071102 (2021).
- T. Fischer, P. Carenza, B. Fore, M. Giannotti, A. Mirizzi, and S. Reddy, Phys. Rev. D 104, 103012 (2021).
- K. Choi, H. J. Kim, H. Seong, and C. S. Shin, J. High Energy Phys. 02 (2022) 143.
- M. Drees, F. Hajkarim, and E. R. Schmitz, J. Cosmol. Astropart. Phys. 06 (2015) 025.
- K. Saikawa and S. Shirai, J. Cosmol. Astropart. Phys. 05 (2018) 035.
- A. R. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980).
- M. Dine, W. Fischler, and M. Srednicki, Phys. Lett. 104B, 199 (1981).
Flavor-violating couplings can arise from radiative corrections [89, 90, 91, 92, 93] and/or PQ charge assignments [94, 95].
- K. Choi, S. H. Im, C. B. Park, and S. Yun, J. High Energy Phys. 11 (2017) 070.
- M. Chala, G. Guedes, M. Ramos, and J. Santiago, Eur. Phys. J. C 81, 181 (2021).
- M. Bauer, M. Neubert, S. Renner, M. Schnubel, and A. Thamm, J. High Energy Phys. 04 (2021) 063.
- K. Choi, S. H. Im, H. J. Kim, and H. Seong, J. High Energy Phys. 08 (2021) 058.
- J. Bonilla, I. Brivio, M. B. Gavela, and V. Sanz, J. High Energy Phys. 11 (2021) 168.
- Y. Ema, K. Hamaguchi, T. Moroi, and K. Nakayama, J. High Energy Phys. 01 (2017) 096.
- L. Calibbi, F. Goertz, D. Redigolo, R. Ziegler, and J. Zupan, Phys. Rev. D 95, 095009 (2017).