- Open Access
Detectable Gravitational Wave Signals from Affleck-Dine Baryogenesis
Phys. Rev. Lett. 127, 181601 – Published 27 October, 2021
DOI: https://doi.org/10.1103/PhysRevLett.127.181601
Abstract
In Affleck-Dine baryogenesis, the observed baryon asymmetry of the Universe is generated through the evolution of the vacuum expectation value of a scalar condensate. This scalar condensate generically fragments into nontopological solitons ( balls). If they are sufficiently long-lived, they lead to an early matter domination epoch, which enhances the primordial gravitational wave signal for modes that enter the horizon during this epoch. The sudden decay of the balls results in a rapid transition from matter to radiation domination, producing a sharp peak in the gravitational wave power spectrum. Avoiding the gravitino over-abundance problem favors scenarios where the peak frequency of the resonance is within the range of the Einstein telescope and/or DECIGO. This observable signal provides a mechanism to test Affleck-Dine baryogenesis.
Physics Subject Headings (PhySH)
Article Text
Supplemental Material
References (63)
- A. D. Sakharov, Pis’ma Zh. Eksp. Teor. Fiz. 5, 32 (1967).
- M. E. Shaposhnikov, Nucl. Phys. B287, 757 (1987).
- M. Dine and A. Kusenko, Rev. Mod. Phys. 76, 1 (2003).
- I. Affleck and M. Dine, Nucl. Phys. B249, 361 (1985).
- M. Dine, L. Randall, and S. D. Thomas, Nucl. Phys. B458, 291 (1996).
- R. Allahverdi and A. Mazumdar, New J. Phys. 14, 125013 (2012).
- T. Gherghetta, C. F. Kolda, and S. P. Martin, Nucl. Phys. B468, 37 (1996).
- A. Kusenko and M. E. Shaposhnikov, Phys. Lett. B 418, 46 (1998).
- G. Rosen, J. Math. Phys. (N.Y.) 9, 996 (1968).
- R. Friedberg, T. D. Lee, and A. Sirlin, Phys. Rev. D 13, 2739 (1976).
- S. R. Coleman, Nucl. Phys. B262, 263 (1985); B269, 744(E) (1986).
- A. Kusenko, Phys. Lett. B 404, 285 (1997).
- A. Kusenko, Phys. Lett. B 405, 108 (1997).
- K. Inomata, M. Kawasaki, K. Mukaida, T. Terada, and T. T. Yanagida, Phys. Rev. D 101, 123533 (2020).
- A. Kusenko and A. Mazumdar, Phys. Rev. Lett. 101, 211301 (2008).
- A. Kusenko, A. Mazumdar, and T. Multamaki, Phys. Rev. D 79, 124034 (2009).
- K. Enqvist and J. McDonald, Phys. Rev. D 62, 043502 (2000).
- D. Marsh, J. High Energy Phys. 05 (2012) 041.
- K. Inomata, K. Kohri, T. Nakama, and T. Terada, J. Cosmol. Astropart. Phys. 10 (2019) 071.
- S. Kasuya and M. Kawasaki, Phys. Rev. D 61, 041301(R) (2000).
- T. Multamaki and I. Vilja, Nucl. Phys. B574, 130 (2000).
- T. Hiramatsu, M. Kawasaki, and F. Takahashi, J. Cosmol. Astropart. Phys. 06 (2010) 008.
- G. Domènech, C. Lin, and M. Sasaki, J. Cosmol. Astropart. Phys. 04 (2021) 062.
- G. Domènech, V. Takhistov, and M. Sasaki, arXiv:2105.06816.
- T. S. Bunch and P. C. W. Davies, Proc. R. Soc. A 360, 117 (1978).
- A. D. Linde, Phys. Lett. 116B, 335 (1982).
- K.-M. Lee and E. J. Weinberg, Phys. Rev. D 36, 1088 (1987).
- A. A. Starobinsky and J. Yokoyama, Phys. Rev. D 50, 6357 (1994).
- See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.127.181601 for more details.
- J. Rosiek, Phys. Rev. D 41, 3464 (1990).
- A. Kusenko, L. Loveridge, and M. Shaposhnikov, Phys. Rev. D 72, 025015 (2005).
- K. Inomata, K. Kohri, T. Nakama, and T. Terada, Phys. Rev. D 100, 043532 (2019).
- A. G. Cohen, S. R. Coleman, H. Georgi, and A. Manohar, Nucl. Phys. B272, 301 (1986).
- N. Aghanim et al. (Planck Collaboration), Astron. Astrophys. 641, A6 (2020).
- K. Kohri and T. Terada, Phys. Rev. D 97, 123532 (2018).
- V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Oxford, 2005).
- K. N. Ananda, C. Clarkson, and D. Wands, Phys. Rev. D 75, 123518 (2007).
- C. J. Moore, R. H. Cole, and C. P. L. Berry, Classical Quantum Gravity 32, 015014 (2015).
- S. Kawamura et al., arXiv:2006.13545.
- C. Caprini et al., J. Cosmol. Astropart. Phys. 03 (2020) 024.
- C. Boehm et al. (Theia Collaboration), arXiv:1707.01348.
- J. Garcia-Bellido, H. Murayama, and G. White, arXiv:2104.04778.
- M. Maggiore et al., J. Cosmol. Astropart. Phys. 03 (2020) 050.
- K. Inomata and T. Nakama, Phys. Rev. D 99, 043511 (2019).
- D. Reitze et al., Bull. Am. Astron. Soc. 51, 035 (2019).
- G. Janssen et al., Proc. Sci. AASKA14 (2015) 037 [arXiv:1501.00127].
- S. Kasuya and M. Kawasaki, Phys. Rev. Lett. 85, 2677 (2000).
- M. Punturo et al., Classical Quantum Gravity 27, 194002 (2010).
- N. Aggarwal et al., arXiv:2011.12414.
- M. Y. Khlopov and A. D. Linde, Phys. Lett. 138B, 265 (1984).
- J. Pradler and F. D. Steffen, Phys. Lett. B 648, 224 (2007).
- M. Kawasaki, K. Kohri, T. Moroi, and A. Yotsuyanagi, Phys. Rev. D 78, 065011 (2008).
- R. Arya, N. Mahajan, and R. Rangarajan, Phys. Lett. B 772, 258 (2017).
- M. Kawasaki, K. Kohri, T. Moroi, and Y. Takaesu, Phys. Rev. D 97, 023502 (2018).
- H. Eberl, I. D. Gialamas, and V. C. Spanos, Phys. Rev. D 103, 075025 (2021).
- N. Blinov, G. Krnjaic, and S. W. Li, arXiv:2108.11386.
- N. D. Barrie, C. Han, and H. Murayama, arXiv:2106.03381.
- M. Kawasaki and S. Ueda, J. Cosmol. Astropart. Phys. 04 (2021) 049.
- J. M. Cline, M. Puel, and T. Toma, Phys. Rev. D 101, 043014 (2020).
- M. Yamada, Phys. Rev. D 93, 083516 (2016).
- K. Harigaya, A. Kamada, M. Kawasaki, K. Mukaida, and M. Yamada, Phys. Rev. D 90, 043510 (2014).
- M. A. G. Garcia and K. A. Olive, J. Cosmol. Astropart. Phys. 09 (2013) 007.
- A. Kusenko, AIP Conf. Proc. 478, 312 (1999).