Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

  • Open Access

Detectable Gravitational Wave Signals from Affleck-Dine Baryogenesis

Graham White1,*, Lauren Pearce2,†, Daniel Vagie3,‡, and Alexander Kusenko4,1,§

  • 1Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
  • 2Pennsylvania State University-New Kensington, New Kensington, Pennsylvania 15068, USA
  • 3Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019, USA
  • 4Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095, USA

  • *graham.white@ipmu.jp
  • lpearce@psu.edu
  • daniel.d.vagie-1@ou.edu
  • §kusenko@g.ucla.edu

Phys. Rev. Lett. 127, 181601 – Published 27 October, 2021

DOI: https://doi.org/10.1103/PhysRevLett.127.181601

Abstract

In Affleck-Dine baryogenesis, the observed baryon asymmetry of the Universe is generated through the evolution of the vacuum expectation value of a scalar condensate. This scalar condensate generically fragments into nontopological solitons (Q balls). If they are sufficiently long-lived, they lead to an early matter domination epoch, which enhances the primordial gravitational wave signal for modes that enter the horizon during this epoch. The sudden decay of the Q balls results in a rapid transition from matter to radiation domination, producing a sharp peak in the gravitational wave power spectrum. Avoiding the gravitino over-abundance problem favors scenarios where the peak frequency of the resonance is within the range of the Einstein telescope and/or DECIGO. This observable signal provides a mechanism to test Affleck-Dine baryogenesis.

Physics Subject Headings (PhySH)

Article Text

Supplemental Material

References (63)

  1. A. D. Sakharov, Pis’ma Zh. Eksp. Teor. Fiz. 5, 32 (1967).
  2. M. E. Shaposhnikov, Nucl. Phys. B287, 757 (1987).
  3. M. Dine and A. Kusenko, Rev. Mod. Phys. 76, 1 (2003).
  4. I. Affleck and M. Dine, Nucl. Phys. B249, 361 (1985).
  5. M. Dine, L. Randall, and S. D. Thomas, Nucl. Phys. B458, 291 (1996).
  6. R. Allahverdi and A. Mazumdar, New J. Phys. 14, 125013 (2012).
  7. T. Gherghetta, C. F. Kolda, and S. P. Martin, Nucl. Phys. B468, 37 (1996).
  8. A. Kusenko and M. E. Shaposhnikov, Phys. Lett. B 418, 46 (1998).
  9. G. Rosen, J. Math. Phys. (N.Y.) 9, 996 (1968).
  10. R. Friedberg, T. D. Lee, and A. Sirlin, Phys. Rev. D 13, 2739 (1976).
  11. S. R. Coleman, Nucl. Phys. B262, 263 (1985); B269, 744(E) (1986).
  12. A. Kusenko, Phys. Lett. B 404, 285 (1997).
  13. A. Kusenko, Phys. Lett. B 405, 108 (1997).
  14. K. Inomata, M. Kawasaki, K. Mukaida, T. Terada, and T. T. Yanagida, Phys. Rev. D 101, 123533 (2020).
  15. A. Kusenko and A. Mazumdar, Phys. Rev. Lett. 101, 211301 (2008).
  16. A. Kusenko, A. Mazumdar, and T. Multamaki, Phys. Rev. D 79, 124034 (2009).
  17. K. Enqvist and J. McDonald, Phys. Rev. D 62, 043502 (2000).
  18. D. Marsh, J. High Energy Phys. 05 (2012) 041.
  19. K. Inomata, K. Kohri, T. Nakama, and T. Terada, J. Cosmol. Astropart. Phys. 10 (2019) 071.
  20. S. Kasuya and M. Kawasaki, Phys. Rev. D 61, 041301(R) (2000).
  21. T. Multamaki and I. Vilja, Nucl. Phys. B574, 130 (2000).
  22. T. Hiramatsu, M. Kawasaki, and F. Takahashi, J. Cosmol. Astropart. Phys. 06 (2010) 008.
  23. G. Domènech, C. Lin, and M. Sasaki, J. Cosmol. Astropart. Phys. 04 (2021) 062.
  24. G. Domènech, V. Takhistov, and M. Sasaki, arXiv:2105.06816.
  25. T. S. Bunch and P. C. W. Davies, Proc. R. Soc. A 360, 117 (1978).
  26. A. D. Linde, Phys. Lett. 116B, 335 (1982).
  27. K.-M. Lee and E. J. Weinberg, Phys. Rev. D 36, 1088 (1987).
  28. A. A. Starobinsky and J. Yokoyama, Phys. Rev. D 50, 6357 (1994).
  29. See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.127.181601 for more details.
  30. J. Rosiek, Phys. Rev. D 41, 3464 (1990).
  31. A. Kusenko, L. Loveridge, and M. Shaposhnikov, Phys. Rev. D 72, 025015 (2005).
  32. K. Inomata, K. Kohri, T. Nakama, and T. Terada, Phys. Rev. D 100, 043532 (2019).
  33. A. G. Cohen, S. R. Coleman, H. Georgi, and A. Manohar, Nucl. Phys. B272, 301 (1986).
  34. N. Aghanim et al. (Planck Collaboration), Astron. Astrophys. 641, A6 (2020).
  35. K. Kohri and T. Terada, Phys. Rev. D 97, 123532 (2018).
  36. V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Oxford, 2005).
  37. K. N. Ananda, C. Clarkson, and D. Wands, Phys. Rev. D 75, 123518 (2007).
  38. C. J. Moore, R. H. Cole, and C. P. L. Berry, Classical Quantum Gravity 32, 015014 (2015).
  39. S. Kawamura et al., arXiv:2006.13545.
  40. C. Caprini et al., J. Cosmol. Astropart. Phys. 03 (2020) 024.
  41. C. Boehm et al. (Theia Collaboration), arXiv:1707.01348.
  42. J. Garcia-Bellido, H. Murayama, and G. White, arXiv:2104.04778.
  43. M. Maggiore et al., J. Cosmol. Astropart. Phys. 03 (2020) 050.
  44. K. Inomata and T. Nakama, Phys. Rev. D 99, 043511 (2019).
  45. D. Reitze et al., Bull. Am. Astron. Soc. 51, 035 (2019).
  46. G. Janssen et al., Proc. Sci. AASKA14 (2015) 037 [arXiv:1501.00127].
  47. S. Kasuya and M. Kawasaki, Phys. Rev. Lett. 85, 2677 (2000).
  48. M. Punturo et al., Classical Quantum Gravity 27, 194002 (2010).
  49. N. Aggarwal et al., arXiv:2011.12414.
  50. M. Y. Khlopov and A. D. Linde, Phys. Lett. 138B, 265 (1984).
  51. J. Pradler and F. D. Steffen, Phys. Lett. B 648, 224 (2007).
  52. M. Kawasaki, K. Kohri, T. Moroi, and A. Yotsuyanagi, Phys. Rev. D 78, 065011 (2008).
  53. R. Arya, N. Mahajan, and R. Rangarajan, Phys. Lett. B 772, 258 (2017).
  54. M. Kawasaki, K. Kohri, T. Moroi, and Y. Takaesu, Phys. Rev. D 97, 023502 (2018).
  55. H. Eberl, I. D. Gialamas, and V. C. Spanos, Phys. Rev. D 103, 075025 (2021).
  56. N. Blinov, G. Krnjaic, and S. W. Li, arXiv:2108.11386.
  57. N. D. Barrie, C. Han, and H. Murayama, arXiv:2106.03381.
  58. M. Kawasaki and S. Ueda, J. Cosmol. Astropart. Phys. 04 (2021) 049.
  59. J. M. Cline, M. Puel, and T. Toma, Phys. Rev. D 101, 043014 (2020).
  60. M. Yamada, Phys. Rev. D 93, 083516 (2016).
  61. K. Harigaya, A. Kamada, M. Kawasaki, K. Mukaida, and M. Yamada, Phys. Rev. D 90, 043510 (2014).
  62. M. A. G. Garcia and K. A. Olive, J. Cosmol. Astropart. Phys. 09 (2013) 007.
  63. A. Kusenko, AIP Conf. Proc. 478, 312 (1999).

Outline

Information

Sign In to Your Journals Account

Filter

Filter

Article Lookup

Enter a citation