Abstract
The spin-wave transportation through a transverse magnetic domain wall (DW) in a magnetic nanowire is studied. It is found that the spin wave passes through a DW without reflection. A magnon, the quantum of the spin wave, carries opposite spins on the two sides of the DW. As a result, there is a spin angular momentum transfer from the propagating magnons to the DW. This magnonic spin-transfer torque can efficiently drive a DW to propagate in the opposite direction to that of the spin wave.
- Received 22 June 2011
DOI:https://doi.org/10.1103/PhysRevLett.107.177207
© 2011 American Physical Society


