Abstract
The rainbow is due to extrema of the angular deflection function of light impinging on water drops. Generically, extrema of suitably defined deflection functions lead to rainbows. These include angular and rotational rainbows in surface scattering and more. Here we introduce the concept of an “energy-loss deflection function” for scattering of particles from a periodic surface whose extrema lead to a new form—the “energy-loss rainbow” which appears as multiple maxima in the final energy distribution of the scattered particle. Energy-loss rainbows are caused by frictional phonon effects which induce structure in the energy-loss distribution instead of “washing it out.” We provide evidence that they have been observed in Ne scattering on self-assembled monolayers.
- Received 15 October 2009
DOI:https://doi.org/10.1103/PhysRevLett.104.116103
©2010 American Physical Society