
Hong-bo Cai,* Shao-ping Zhu, Mo Chen, Si-zhong Wu, X. T. He, and Kunioki Mima
(Received 5 January 2012; published 10 January 2012)

DOI: 10.1103/PhysRevE.85.019903 PACS number(s): 52.57.Kk, 52.38.Kd, 52.65.Rr, 99.10.Cd

In the original paper [1] there is an error in the constants c_1 and c_4 in the two lines above Eq. (13). The correct expression should read

$$c_1 = c_4 = -\frac{\delta p_{e1}}{\delta p_{e2} + \delta p_{e1}} (\frac{n_{2}^{1}\frac{n_{2}^{1}}{n_{1}^{1}} - \frac{n_{1}^{1}\frac{n_{1}^{1}}{n_{2}^{1}}}}{n_{2}^{1}}).$$

Also, Eq. (13) correctly reads

$$\frac{eB_0}{m_e c} = \begin{cases}
\frac{1}{(\delta p_{e1} + \delta p_{e2})} \left(\frac{n_{2}^{1}\frac{n_{2}^{1}}{n_{1}^{1}} - \frac{n_{1}^{1}\frac{n_{1}^{1}}{n_{2}^{1}}}}{n_{2}^{1}} \right) \exp \left[\frac{y + d}{\delta p_{e2}} \right], & y < -d \\
\frac{1}{(\delta p_{e1} + \delta p_{e2})} \left(\frac{n_{2}^{1}\frac{n_{2}^{1}}{n_{1}^{1}} - \frac{n_{1}^{1}\frac{n_{1}^{1}}{n_{2}^{1}}}}{n_{2}^{1}} \right) \exp \left[-\frac{y + d}{\delta p_{e2}} \right] - \exp \left[\frac{y - d}{\delta p_{e2}} \right], & -d \leq y \leq d \\
\frac{-1}{(\delta p_{e1} + \delta p_{e2})} \left(\frac{n_{2}^{1}\frac{n_{2}^{1}}{n_{1}^{1}} - \frac{n_{1}^{1}\frac{n_{1}^{1}}{n_{2}^{1}}}}{n_{2}^{1}} \right) \exp \left[-\frac{y - d}{\delta p_{e2}} \right], & y > d.
\end{cases}$$

Fortunately we used the correct equation to calculate the numerical value of the magnetic field, as shown in Fig. 2 and Fig. 4(b). Therefore all other results of the paper remain unaffected.

We thank Yan Yin for pointing out this error.