Rough viscoelastic sliding contact: Theory and experiments

G. Carbone and C. Putignano
Phys. Rev. E 89, 032408 – Published 25 March 2014

Abstract

In this paper, we show how the numerical theory introduced by the authors [Carbone and Putignano, J. Mech. Phys. Solids 61, 1822 (2013)] can be effectively employed to study the contact between viscoelastic rough solids. The huge numerical complexity is successfully faced up by employing the adaptive nonuniform mesh developed by the authors in Putignano et al. [J. Mech. Phys. Solids 60, 973 (2012)]. Results mark the importance of accounting for viscoelastic effects to correctly simulate the sliding rough contact. In detail, attention is, first, paid to evaluate the viscoelastic dissipation, i.e., the viscoelastic friction. Fixed the sliding speed and the normal load, friction is completely determined. Furthermore, since the methodology employed in the work allows to study contact between real materials, a comparison between experimental outcomes and numerical prediction in terms of viscoelastic friction is shown. The good agreement seems to validate—at least partially—the presented methodology. Finally, it is shown that viscoelasticity entails not only the dissipative effects previously outlined, but is also strictly related to the anisotropy of the contact solution. Indeed, a marked anisotropy is present in the contact region, which results stretched in the direction perpendicular to the sliding speed. In the paper, the anisotropy of the deformed surface and of the contact area is investigated and quantified.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 14 October 2013
  • Revised 10 January 2014

DOI:https://doi.org/10.1103/PhysRevE.89.032408

©2014 American Physical Society

Authors & Affiliations

G. Carbone and C. Putignano

  • Department of Mechanics, Mathematics and Mangagement, TriboLAB, Politecnico di Bari, Viale Japigia 182, 70126 Bari, Italy

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 89, Iss. 3 — March 2014

Reuse & Permissions
Access Options

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×