Estimation of diffusion time with the Shannon entropy approach

Pablo M. Cincotta and Claudia M. Giordano
Phys. Rev. E 107, 064101 – Published 1 June 2023

Abstract

The present work revisits and improves the Shannon entropy approach when applied to the estimation of an instability timescale for chaotic diffusion in multidimensional Hamiltonian systems. This formulation has already been proved efficient in deriving the diffusion timescale in 4D symplectic maps and planetary systems, when the diffusion proceeds along the chaotic layers of the resonance's web. Herein the technique is used to estimate the diffusion rate in the Arnold model, i.e., of the motion along the homoclinic tangle of the so-called guiding resonance for several values of the perturbation parameter such that the overlap of resonances is almost negligible. Thus differently from the previous studies, the focus is fixed on deriving a local timescale related to the speed of an Arnold diffusion-like process. The comparison of the current estimates with determinations of the diffusion time obtained by straightforward numerical integration of the equations of motion reveals a quite good agreement.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 2 March 2023
  • Accepted 12 May 2023

DOI:https://doi.org/10.1103/PhysRevE.107.064101

©2023 American Physical Society

Physics Subject Headings (PhySH)

Nonlinear Dynamics

Authors & Affiliations

Pablo M. Cincotta* and Claudia M. Giordano

  • Grupo de Caos en Sistemas Hamiltonianos, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata and Instituto de Astrofísica de La Plata (CONICET), B1900FWA La Plata, B1900FWA, Argentina

  • *pmc@fcaglp.unlp.edu.ar
  • giordano@fcaglp.unlp.edu.ar

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 107, Iss. 6 — June 2023

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×