The correct value for the Fourier transform $\tilde{G}(x - x') = (2\pi)^{-3} \int d^3 p e^{ip\cdot(x-x')} G(p)$ appearing as Eq. (42) in [1] where $G(p) = \gamma^2 \gamma^\mu n_\mu(p)$ with $n_\mu(p) = (0, n(p))$ where $n(p) = (-\lambda(1 + \lambda^2)^{-\frac{1}{2}}, (1 + \lambda^2)^{-\frac{1}{2}}, 0)$ and $\lambda = p_\gamma/p_x$ is [calling $x - x' = \Delta = (\Delta_x, \Delta_y, \Delta_z)$] $\tilde{G}(\Delta) = -\gamma^5 \gamma^1 P(\Delta) - \gamma^5 \gamma^2 Q(\Delta)$ with $P(\Delta) = -\frac{i}{2\pi} \delta(\Delta_z)\Delta_x(\Delta_x^2 + \Delta_y^2)^{-\frac{1}{2}}$ and $Q(\Delta) = \frac{i}{2\pi} \delta(\Delta_z)\Delta_x(\Delta_x^2 + \Delta_y^2)^{-\frac{1}{2}}$. We see that the integral is null for any direction Δ when $\Delta_z \neq 0$ and so the Elko theory as constructed originally in [2] and developed has an infinite number of axes of locality. However the integral is non-null when $\Delta_z = 0$ and thus the theory instead of having an axis of locality has an arbitrary (x, y) plane of nonlocality in each inertial frame where the calculation is done. We note that the results of the integrals in the paper are correct, but they do not express the values of the Fourier transform $\tilde{G}(x - x')$ for particular values of Δ. It is not licit to fix $a\ priori$ two of the components of Δ as being null to calculate the integral $(2\pi)^{-3} \int d^3 p e^{ip\cdot(x-x')} G(p)$, for this procedure excludes the singular behavior in the sense of distributions of the Fourier integral.

Authors acknowledge discussions with D. V. Ahluwalia, D. Grumiller, Roldão da Rocha, Jr., and J. Vaz, Jr.