Errata: Dragging effect on the inertial frame and the contribution of matter to the gravitational "constant" in a closed cosmological model of the Brans-Dicke theory

[Phys. Rev. D 19, 2861 (1979)]

A. Miyazaki

The following terms should be added to the right-hand side of the following equations, respectively:

to Eqs. (4a) and (18a), \(a \dot{\phi}/\phi \);

to Eq. (18c), \((1/2c)^2 \sin^2 \chi \sin^2 \theta \dot{\phi}/\phi \theta \); \(\omega \);

to Eq. (18d), \((1/2c)^2 \sin^2 \chi \sin^2 \theta \dot{\phi}/\phi \theta \). \(\omega \).

The third term in the large square brackets of Eq. (18e) should read \(-(2\omega/c)a \dot{\phi}/\phi \). The time dependence of the angular velocity of the inertial-frame dragging and the shell \(a^{-3}(t) \) should wholly be revised to \(a^{-3}(t) \).

In Eq. (1b) a minus sign should be added to the right-hand side. The term \((\eta/3)(\dot{\phi}/\phi)^2 \) of Eq. (4b) should read \((\eta/2)(\dot{\phi}/\phi)^2 \). In Eq. (17) cot\(\phi \) should read cot\(\theta \). In Eq. (25) \(F(\alpha, \beta, \gamma + \beta - \gamma + 1; 1 - z) \) should read \(F(\alpha, \beta, \alpha + \beta - \gamma + 1; 1 - z) \). In Eq. (43) \(\chi_0 \) and \(\chi_1 \) should be interchanged.

Erratum: Analytic properties of the vertex functions in gauge theories. II

[Phys. Rev. D 22, 2550 (1980)]

James S. Ball and Ting-Wai Chiu

Second line of Eq. (2.9d): Replace \(+b_{231} \) by \(-b_{321} \).

First line of Eq. (3.3d): Replace \(+\frac{a}{2} \) by \(-\frac{a}{2} \), and \(-20P_3^2P_1 \cdot P_3/3\Delta^2 \) by \(20P_3^2P_1 \cdot P_3/3\Delta^2 \). Delete the term \(16P_3^2P_3^2/\Delta^2 \).

On page 2554, Sec. III, in the invariant functions of the ghost-ghost-gluon vertex: Replace \(g_s \) by \(g_s^2 \) in the third and fourth equations. In the fourth equation, replace \(-b(P_1, P_2, P_3) \) by \(+b(P_1, P_2, P_3) \). In the fifth equation, replace \(I_0 \) by \(I_0/2 \), and \(P_3^4 \ln(P_1^2/P_3^2) \) by \(P_3^4 \ln(P_1^2/P_3^2) \).

In Eq. (4.1a): Replace \(-\frac{a}{4}(1/P_3^2) \) by \(-\frac{a}{4}(1/P_3^2) \).