Errata

Erratum: Simple bound for K_{13} decay parameters using the πK $(s=0,T=\frac{1}{2})$ phase shift [Phys. Rev. D 6, 1943 (1972)]

M. Micu and E. E. Radescu

The first relation of Eq. (13) should read

$$A = \frac{1 - \omega^2}{(1 + y)(\sigma^2 - \omega^2)} \left[\ln \frac{y + \omega}{\omega - \omega^2} - \frac{1 - \sigma^2}{\sigma(\sigma^2 - \omega^2)} \ln \frac{y + \sigma}{\sigma - \omega^2} + \frac{y(1 - \omega^2)}{\omega^2(y^2 - \omega^2)} \right].$$

Also, the right-hand side of the second inequality of (15) should read 0.117 instead of 0.17.

Erratum: Möller scattering and weak neutral currents [Phys. Rev. D 10, 3629 (1974)]

R. Gastmans and Y. Van Ham

L. DeRaad, Jr. pointed out that some of the polarization-dependent terms in Eq. (12) are wrong. The correct α^3 cross section for Möller scattering in the extreme relativistic limit is obtained by replacing in the coefficient of u the factor $(1 - z)^3/(1 + z)$ by $(1 + z)^3$, in the coefficient of w the factor $(5 + 6z)$ by $(4 + 7z)$, and in the coefficient of w^2 the factor $(3 - 2z)$ by $(3 - 2z - z^2)$. Complete agreement with L. DeRaad, Jr. is then obtained for this cross section [see L. DeRaad, Jr., Phys. Rev. D (to be published)].

As a result, the values for δ_α in Table III are wrong: They are now given within 0.1% by the values of δ_α in Table II. Consequently, conclusion (i) should be modified to read "and the effect of initial polarization is negligible."

Gerald W. Intemann and Gary K. Greenhut

We have become aware of $\bar{p}p$ annihilation data at vanishing lab momentum [N. Barash et al., Phys. Rev. 139, B1659 (1965)] that can be compared with our theoretical results. These data give an experimental branching ratio

$$\frac{\sigma(\bar{p}p - K^0K^0\pi^0)}{2\sigma(\bar{p}p - K^0\pi^0)} = 1.0 \pm 0.3$$

which agrees fairly well with the theoretical ratio for $\sigma(\bar{p}p - K^0\pi^0)/\sigma(\bar{p}p - K^0\pi^0)$ in Eq. (2.18). After subtracting the K^* resonance contribution, the experimental data yield the branching ratio

$$\frac{\sigma(\bar{p}p - K^0K^+\pi^-)}{2\sigma(\bar{p}p - K^0K^-)} = 1.3 \pm 0.5,$$

which agrees within two standard deviations with our result for $\sigma(\bar{p}p - K^0K^-\pi^+)/\sigma(\bar{p}p - K^0K^-)$ in Eq. (3.11).

We wish to thank Dr. Noel Yeh for bringing these additional $\bar{p}p$ data to our attention.