Errata

Erratum: Radiative corrections to $e^+e^→μ^μ^−$ and neutral currents in unified gauge theories [Phys. Rev. D 8, 890 (1973)]

Duane A. Dicus

There is an error in the first term of the expression for the polarization of the final electron in the reaction $e^+e^→e^e^−$. Equation (27) should read

$$P = ab \frac{1-\varepsilon}{W^2} [(1+\varepsilon)^2 + (1-\varepsilon)(1-\varepsilon^2)s^2 \cos 2\phi].$$

(27)

Nothing else is changed.

I thank Dr. A. McDonald for pointing out this mistake.

Erratum: Pion charge-exchange scattering in the (3,3)-resonance region in nuclei with a neutron excess [Phys. Rev. D 9, 2144 (1974)]

Stephen I. Adler

The following misprints should be corrected:
(i) Page 2148, first column, line 2: The quantity $μ_1^{(1)}$ should read $M_1^{(1)}$.
(ii) Page 2150, Eq. (60): The matrix element $S_{11} - S_{22}$ should read $S_{11}' - S_{22}'$.

Erratum: Nuclear charge-exchange corrections to leptonic pion production in the (3,3)-resonance region [Phys. Rev. D 9, 2125 (1974)]

Stephen L. Adler, Shmuel Nussinov, and E. A. Paschos

Page 2138: In the second paragraph of the added note, the statement “The effect is to reduce R' by about 2.5%... should cause an error of perhaps 10% at most in R'” should be changed to read “The effect is to reduce R' by about 1%... should cause an error of at most a few percent in R'.”

The following misprints should be corrected:
(i) Page 2127, Eq. (9b): The $μ_1$ to the right of the arrow should read $μ_2$.
(ii) Page 2128, Eq. (15): The quantity $a(ω_μ + T - μ^- + T' + π^0)$ should read $a(ω_μ + T - μ^- + T'' + π^0)$.
(iii) Page 2134, Eq. (46): The quantity $r(μ, μ^- A^{12})$ should read $r'(μ, μ^- A^{12})$.
(iv) Page 2139, Eq. (A14): The quantity \sum_i should read \sum_i.

Erratum: Sum rule for deep-inelastic electroproduction from polarized protons [Phys. Rev. D 9, 1444 (1974)]

John Ellis and Robert Jaffe

Sum rules for polarized deep-inelastic scattering off protons and neutrons individually had been obtained by other authors prior to our work, and we should have referred to them.

Gourdin obtained (in the notation of our paper)

$$\int_0^1 g_1^p(ξ) dξ = 0.19 g_A, \int_0^1 g_1^n(ξ) dξ = 0.02 g_A$$

(1)

using a parton model and assuming that the gluon