Cosmic separation of phases

Edward Witten
Phys. Rev. D 30, 272 – Published 15 July 1984
PDFExport Citation

Abstract

A first-order QCD phase transition that occurred reversibly in the early universe would lead to a surprisingly rich cosmological scenario. Although observable consequences would not necessarily survive, it is at least conceivable that the phase transition would concentrate most of the quark excess in dense, invisible quark nuggets, providing an explanation for the dark matter in terms of QCD effects only. This possibility is viable only if quark matter has energy per baryon less than 938 MeV. Two related issues are considered in appendices: the possibility that neutron stars generate a quark-matter component of cosmic rays, and the possibility that the QCD phase transition may have produced a detectable gravitational signal.

  • Received 9 April 1984

DOI:https://doi.org/10.1103/PhysRevD.30.272

©1984 American Physical Society

Authors & Affiliations

Edward Witten*

  • Institute for Advanced Study, Princeton, New Jersey 08540

  • *On leave from Department of Physics, Princeton University, Princeton, N.J.

References (Subscription Required)

Click to Expand
Issue

Vol. 30, Iss. 2 — 15 July 1984

Reuse & Permissions
Access Options
Editorial
General Relativity Still Making Waves
September 24, 2015

Clifford Will discusses the importance of Einstein’s general theory of relativity and its relevance for physics research today.

APS and CERN Sign Open Access Agreement for SCOAP3

APS and CERN, the host organization of SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics), have signed an agreement to make the high-energy physics (HEP) articles published in three leading APS journals open access beginning January 1, 2018. This agreement acts to support the publishing of open access content for wider benefit of the HEP community.

General Relativity
2015 - General Relativity’s Centennial

The editors of the Physical Review journals have curated a collection of landmark papers on General Relativity to celebrate its centennial. These papers are currently free to read.

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×