- Open Access
Three-body exchanges with primordial black holes
Phys. Rev. D 111, 043029 – Published 12 February, 2025
DOI: https://doi.org/10.1103/PhysRevD.111.043029
Abstract
The abundance of massive primordial black holes has historically been constrained by dynamical probes. Since these objects can participate in hard few-body scattering processes, they can readily transfer energy to stellar systems and, in particular, disrupt wide binaries. However, disruption is not the only possible outcome of such few-body processes. Primordial black holes could also participate in exchange processes, in which one component of a binary system is ejected and replaced by the black hole itself. In this case, the remaining object in the binary would dynamically appear to have an invisible companion. We study the rate of exchange processes for primordial black holes as a component of dark matter and evaluate possible mechanisms for detecting such binaries. We find that many such binaries plausibly exist in the Solar neighborhood and show that this process can account for observed binary systems whose properties run counter to the predictions of isolated binary evolution.
Physics Subject Headings (PhySH)
Article Text
References (121)
- I. D. Zel’dovich and Ya. B. Novikov, The hypothesis of cores retarded during expansion and the hot cosmological model, Sov. Astron. AJ (Engl. Transl.) 10, 602 (1967).
- S. Hawking, Gravitationally collapsed objects of very low mass, Mon. Not. R. Astron. Soc. 152, 75 (1971).
- B. J. Carr and S. W. Hawking, Black holes in the early Universe, Mon. Not. R. Astron. Soc. 168, 399 (1974).
- B. Carr, F. Kuhnel, and M. Sandstad, Primordial black holes as dark matter, Phys. Rev. D 94, 083504 (2016).
- B. Carr and F. Kuhnel, Primordial black holes as dark matter: Recent developments, Annu. Rev. Nucl. Part. Sci. 70, 355 (2020).
- A. M. Green and B. J. Kavanagh, Primordial black holes as a dark matter candidate, J. Phys. G 48, 043001 (2021).
- B. J. Carr and A. M. Green, The history of primordial black holes, arXiv:2406.05736.
- A. M. Green, Primordial black holes as a dark matter candidate—a brief overview, Nucl. Phys. B1003, 116494 (2024).
- S. Sugiyama, T. Kurita, and M. Takada, On the wave optics effect on primordial black hole constraints from optical microlensing search, Mon. Not. R. Astron. Soc. 493, 3632 (2020).
- P. Montero-Camacho, X. Fang, G. Vasquez, M. Silva, and C. M. Hirata, Revisiting constraints on asteroid-mass primordial black holes as dark matter candidates, J. Cosmol. Astropart. Phys. 08 (2019) 031.
- N. Smyth, S. Profumo, S. English, T. Jeltema, K. McKinnon, and P. Guhathakurta, Updated constraints on asteroid-mass primordial black holes as dark matter, Phys. Rev. D 101, 063005 (2020).
- M. Gorton and A. M. Green, How open is the asteroid-mass primordial black hole window?, SciPost Phys. 17, 032 (2024).
- T. D. Brandt, Constraints on MACHO dark matter from compact stellar systems in ultra-faint dwarf galaxies, Astrophys. J. Lett. 824, L31 (2016).
- S. M. Koushiappas and A. Loeb, Dynamics of dwarf galaxies disfavor stellar-mass black holes as dark matter, Phys. Rev. Lett. 119, 041102 (2017).
- Q. Zhu, E. Vasiliev, Y. Li, and Y. Jing, Primordial black holes as dark matter: Constraints from compact ultra-faint dwarfs, Mon. Not. R. Astron. Soc. 476, 2 (2018).
- J. Stegmann, P. R. Capelo, E. Bortolas, and L. Mayer, Improved constraints from ultra-faint dwarf galaxies on primordial black holes as dark matter, Mon. Not. R. Astron. Soc. 492, 5247 (2020).
- P. W. Graham and H. Ramani, Constraints on dark matter from dynamical heating of stars in ultrafaint dwarfs. Part 1: MACHOs and primordial black holes, Phys. Rev. D 110, 075011 (2024).
- J. N. Bahcall, P. Hut, and S. Tremaine, Maximum mass of objects that constitute unseen disk material, Astrophys. J. 290, 15 (1985).
- J. Yoo, J. Chaname, and A. Gould, The end of the MACHO era: Limits on halo dark matter from stellar halo wide binaries, Astrophys. J. 601, 311 (2004).
- D. P. Quinn, M. I. Wilkinson, M. J. Irwin, J. Marshall, A. Koch, and V. Belokurov, On the reported death of the MACHO Era, Mon. Not. R. Astron. Soc. 396, L11 (2009).
- C. Allen and M. A. Monroy-Rodríguez, An improved catalog of halo wide binary candidates, Astrophys. J. 790, 158 (2014).
- M. A. Monroy-Rodríguez and C. Allen, The end of the MACHO era- revisited: New limits on MACHO masses from halo wide binaries, Astrophys. J. 790, 159 (2014).
- E. Tyler, A. M. Green, and S. P. Goodwin, Modelling uncertainties in wide binary constraints on primordial black holes, Mon. Not. R. Astron. Soc. 524, 3052 (2023).
- D. C. Heggie, Binary evolution in stellar dynamics, Mon. Not. R. Astron. Soc. 173, 729 (1975).
- J. G. Hills, Encounters between binary and single stars and their effect on the dynamical evolution of stellar systems, Astron. J. 80, 809 (1975).
- G. D. Quinlan, The dynamical evolution of massive black hole binaries—I. Hardening in a fixed stellar background, New Astron. 1, 35 (1996).
- M. Valtonen and H. Karttunen, The Three-Body Problem (2006).
- B. V. Lehmann, A. Webber, O. G. Ross, and S. Profumo, Capture of primordial black holes in extrasolar systems, J. Cosmol. Astropart. Phys. 08 (2022) 079.
- T. Prusti et al. (Gaia Collaboration), The Gaia mission, Astron. Astrophys. 595, A1 (2016).
- J. Binney and S. Tremaine, Galactic Dynamics: Second Edition (Princeton University Press, Princeton, New Jersey, 2008).
- J. Peñarrubia, S. E. Koposov, M. G. Walker, G. Gilmore, N. W. Evans, and C. D. Mackay, Binary stars as probes of dark substructures in dwarf galaxies, arXiv:1005.5388.
- E. D. Ramirez and M. R. Buckley, Constraining dark matter substructure with Gaia wide binaries, Mon. Not. R. Astron. Soc. 525, 5813 (2023).
- J. Peñarrubia, A. D. Ludlow, J. Chanamé, and M. G. Walker, Wide binaries in ultrafaint galaxies: A window on to dark matter on the smallest scales, Mon. Not. R. Astron. Soc. 461, L72 (2016).
- J. G. Hills, Encounters between single and binary stars: The effect of intruder mass on the maximum impact velocity for which the mean change in binding energy is positive, Astron. J. 99, 979 (1990).
- D. C. Heggie, P. Hut, and S. L. W. McMillan, Binary single star scattering. VII. Hard binary exchange cross-sections for arbitrary mass ratios: Numerical results and semianalytic fits, Astrophys. J. 467, 359 (1996).
- B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Constraints on primordial black holes, Rep. Prog. Phys. 84, 116902 (2021).
- B. Carr, S. Clesse, J. Garcia-Bellido, M. Hawkins, and F. Kuhnel, Observational evidence for primordial black holes: A positivist perspective, Phys. Rep. 1054, 1 (2024).
- H. Niikura et al., Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations, Nat. Astron. 3, 524 (2019).
- P. Mroz et al., No massive black holes in the Milky Way halo, Nature (London) 632, 749 (2024).
- A. Esteban-Gutiérrez, E. Mediavilla, J. Jiménez-Vicente, and J. A. Muñoz, Constraints on the abundance of primordial black holes from X-ray quasar microlensing observations: Substellar to planetary mass range, Astrophys. J. 954, 172 (2023).
- M. Gorton and A. M. Green, Effect of clustering on primordial black hole microlensing constraints, J. Cosmol. Astropart. Phys. 08 (2022) 035.
- Y. Ali-Haïmoud and M. Kamionkowski, Cosmic microwave background limits on accreting primordial black holes, Phys. Rev. D 95, 043534 (2017).
- P. Tisserand et al. (EROS-2 Collaboration), Limits on the Macho content of the galactic halo from the EROS-2 survey of the magellanic clouds, Astron. Astrophys. 469, 387 (2007).
- B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, New cosmological constraints on primordial black holes, Phys. Rev. D 81, 104019 (2010).
- B. V. Lehmann, S. Profumo, and J. Yant, The maximal-density mass function for primordial black hole dark matter, J. Cosmol. Astropart. Phys. 04 (2018) 007.
- S. Jung and C. S. Shin, Gravitational-wave fringes at LIGO: Detecting compact dark matter by gravitational lensing, Phys. Rev. Lett. 122, 041103 (2019).
- K. Griest, A. M. Cieplak, and M. J. Lehner, Experimental limits on primordial black hole dark matter from the first 2 yr of Kepler data, Astrophys. J. 786, 158 (2014).
- R. A. Allsman et al. (Macho Collaboration), MACHO project limits on black hole dark matter in the 1-30 solar mass range, Astrophys. J. Lett. 550, L169 (2001).
- J. A. Dror, H. Ramani, T. Trickle, and K. M. Zurek, Pulsar timing probes of primordial black holes and subhalos, Phys. Rev. D 100, 023003 (2019).
- Z.-C. Chen and Q.-G. Huang, Distinguishing primordial black holes from astrophysical black holes by Einstein Telescope and cosmic explorer, J. Cosmol. Astropart. Phys. 08 (2020) 039.
- B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Search for subsolar mass ultracompact binaries in Advanced LIGO’s second observing run, Phys. Rev. Lett. 123, 161102 (2019).
- B. J. Kavanagh, D. Gaggero, and G. Bertone, Merger rate of a subdominant population of primordial black holes, Phys. Rev. D 98, 023536 (2018).
- https://github.com/bradkav/PBHbounds
- B. J. Kavanagh, bradkav/PBHbounds: Release version (2019) 10.5281/zenodo.3538999.
- T. Chiba and S. Yokoyama, Spin distribution of primordial black holes, Prog. Theor. Exp. Phys. 2017, 083E01 (2017).
- M. Mirbabayi, A. Gruzinov, and J. Noreña, Spin of primordial black holes, J. Cosmol. Astropart. Phys. 03 (2020) 017.
- V. De Luca, V. Desjacques, G. Franciolini, A. Malhotra, and A. Riotto, The initial spin probability distribution of primordial black holes, J. Cosmol. Astropart. Phys. 05 (2019) 018.
- R. Abbott et al. (LIGO Scientific and Virgo Collaborations), Properties and astrophysical implications of the binary black hole merger GW190521, Astrophys. J. Lett. 900, L13 (2020).
- A. Lamberts, S. Garrison-Kimmel, P. Hopkins, E. Quataert, J. Bullock, C.-A. Faucher-Giguère, A. Wetzel, D. Keres, K. Drango, and R. Sanderson, Predicting the binary black hole population of the Milky Way with cosmological simulations, Mon. Not. R. Astron. Soc. 480, 2704 (2018).
- C. J. Conselice, A. Wilkinson, K. Duncan, and A. Mortlock, The evolution of galaxy number density at and its implications, Astrophys. J. 830, 83 (2016).
- T. R. Lauer et al., New horizons observations of the cosmic optical background, Astrophys. J. 906, 77 (2021).
- J. L. Margot, P. Pravec, P. Taylor, B. Carry, and S. Jacobson, Asteroid systems: Binaries, triples, and pairs, in Asteroids IV, edited by P. Michel, F. E. DeMeo, and W. F. Bottke (2015), pp. 355–374.
- P. Pravec et al., Binary asteroid population. 3. Secondary rotations and elongations, Icarus 267, 267 (2016).
- W. M. Grundy, K. S. Noll, H. G. Roe, M. W. Buie, S. B. Porter, A. H. Parker, D. Nesvorný, H. F. Levison, S. D. Benecchi, D. C. Stephens, and C. A. Trujillo, Mutual orbit orientations of transneptunian binaries, Icarus 334, 62 (2019).
- K. S. Noll, M. E. Brown, M. W. Buie, W. M. Grundy, H. F. Levison, S. Marchi, C. B. Olkin, S. A. Stern, and H. A. Weaver, Trojan asteroid satellites, rings, and activity, Space Sci. Rev. 219, 59 (2023).
- K. J. Walsh and S. A. Jacobson, Formation and evolution of binary asteroids, in Asteroids IV, edited by P. Michel, F. E. DeMeo, and W. F. Bottke (University of Arizona Press, Tucson, Arizona, 2015), pp. 375–393.
- K. Noll, W. M. Grundy, D. Nesvorný, and A. Thirouin, Trans-Neptunian binaries (2018), in The Trans-Neptunian Solar System, edited by D. Prialnik, M. A. Barucci, and L. Young (2020), pp. 201–224.
- J. M. Petit and O. Mousis, KBO binaries: How numerous were they?, Icarus 168, 409 (2004).
- W. J. Merline, S. J. Weidenschilling, D. D. Durda, J. L. Margot, P. Pravec, and A. D. Storrs, Asteroids do have satellites, in Asteroids III (2002), pp. 289–312.
- R. Caputo et al., All-sky medium energy gamma-ray observatory eXplorer mission concept, J. Astron. Telesc. Instrum. Syst. 8, 044003 (2022).
- A. Arbey and J. Auffinger, blackhawk: A public code for calculating the Hawking evaporation spectra of any black hole distribution, Eur. Phys. J. C 79, 693 (2019).
- A. Arbey and J. Auffinger, Physics beyond the standard model with blackhawk v2.0, Eur. Phys. J. C 81, 910 (2021).
- A. Arbey, J. Auffinger, and J. Silk, Primordial Kerr black holes, Proc. Sci. ICHEP2020 (2021) 585 [arXiv:2012.14767].
- M. Calzà and J. a. G. Rosa, Evaporating Kerr black holes as probes of new physics, arXiv:2312.09261.
- Q. Taylor, G. D. Starkman, M. Hinczewski, D. P. Mihaylov, J. Silk, and J. de Freitas Pacheco, Extremal Kerr black hole dark matter from Hawking evaporation, Phys. Rev. D 109, 104066 (2024).
- B. V. Lehmann, O. G. Ross, A. Webber, and S. Profumo, Three-body capture, ejection, and the demographics of bound objects in binary systems, Mon. Not. R. Astron. Soc. 505, 1017 (2021).
- A. Arbey and J. Auffinger, Detecting Planet 9 via Hawking radiation, arXiv:2006.02944.
- J. Scholtz and J. Unwin, What if Planet 9 is a primordial black hole?, Phys. Rev. Lett. 125, 051103 (2020).
- Y. N. Eroshenko, Capture of the free-floating planets and primordial black holes into protostellar clouds, New Astron. 103, 102057 (2023).
- S. Seager, Exoplanets (2010).
- J. N. Winn, Joint constraints on exoplanetary orbits from Gaia DR3 and Doppler data, Astron. J. 164, 196 (2022).
- M. L. Marcussen and S. H. Albrecht, Spectroscopic follow-up of Gaia exoplanet candidates: Impostor binary stars invade the Gaia DR3 astrometric exoplanet candidates, Astron. J. 165, 266 (2023).
- G.-Y. Xiao, Y.-J. Liu, H.-Y. Teng, W. Wang, T. D. Brandt, G. Zhao, F. Zhao, M. Zhai, and Q. Gao, The masses of a sample of radial-velocity exoplanets with astrometric measurements, Res. Astron. Astrophys. 23, 055022 (2023).
- A. T. Stevenson, C. A. Haswell, J. R. Barnes, and J. K. Barstow, Combing the brown dwarf desert with Gaia DR3, Mon. Not. R. Astron. Soc. 526, 5155 (2023).
- M. Perryman, J. Hartman, G. Á. Bakos, and L. Lindegren, Astrometric exoplanet detection with Gaia, Astrophys. J. 797, 14 (2014).
- Exoplanet and candidate statistics (NASA Exoplanet Archive), https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html (accessed: 2024-07-22).
- Y. Bai, S. Lu, and N. Orlofsky, Dark exoplanets, Phys. Rev. D 108, 103026 (2023).
- A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, C. Babusiaux, M. Biermann, O. L. Creevey, D. W. Evans, L. Eyer et al. (Gaia Collaboration), Gaia early data release 3. Summary of the contents and survey properties, Astron. Astrophys. 650, C3 (2021).
- K. El-Badry, H.-W. Rix, and T. M. Heintz, A million binaries from Gaia eDR3: Sample selection and validation of Gaia parallax uncertainties, Mon. Not. R. Astron. Soc. 506, 2269 (2021).
- K. El-Badry, Gaia’s binary star renaissance, New Astron. Rev. 98, 101694 (2024).
- K. El-Badry et al., A Sun-like star orbiting a black hole, Mon. Not. R. Astron. Soc. 518, 1057 (2023).
- P. Panuzzo et al. (Gaia Collaboration), Discovery of a dormant 33 solar-mass black hole in pre-release Gaia astrometry, Astron. Astrophys. 686, L2 (2024).
- K. El-Badry, On the formation of a 33 solar-mass black hole in a low-metallicity binary, Open J. Astrophys. 7 (2024), .
- A. Tanikawa, K. Hattori, N. Kawanaka, T. Kinugawa, M. Shikauchi, and D. Tsuna, Search for a black hole binary in Gaia DR3 astrometric binary stars with spectroscopic data, Astrophys. J. 946, 79 (2023).
- T. Bensby, S. Feltzing, and M. S. Oey, Exploring the Milky Way stellar disk—A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood, Astron. Astrophys. 562, A71 (2014).
- T. Sukhbold, T. Ertl, S. E. Woosley, J. M. Brown, and H. T. Janka, Core-collapse supernovae from 9 to 120 solar masses based on neutrino-powered explosions, Astrophys. J. 821, 38 (2016).
- S. Justham, S. Rappaport, and P. Podsiadlowski, Magnetic braking of Ap/Bp stars: Application to compact black-hole X-ray binaries, Mon. Not. R. Astron. Soc. 366, 1415 (2006).
- S. Rastello, G. Iorio, M. Mapelli, M. Arca-Sedda, U. N. Di Carlo, G. J. Escobar, T. Shenar, and S. Torniamenti, Dynamical formation of Gaia BH1 in a young star cluster, Mon. Not. R. Astron. Soc. 526, 740 (2023).
- I. Kotko, S. Banerjee, and K. Belczynski, The enigmatic origin of two dormant BH binaries: Gaia BH1 and Gaia BH2, arXiv:2403.13579.
- A. Tanikawa, S. Cary, M. Shikauchi, L. Wang, and M. S. Fujii, Compact binary formation in open star clusters—I. High formation efficiency of Gaia BHs and their multiplicities, Mon. Not. R. Astron. Soc. 527, 4031 (2024).
- D. Marín Pina, S. Rastello, M. Gieles, K. Kremer, L. Fitzgerald, and B. Rando Forastier, Dynamical formation of Gaia BH3 in the progenitor globular cluster of the ED-2 stream, Astron. Astrophys. 688, L2 (2024).
- G. Iorio et al., The boring history of Gaia BH3 from isolated binary evolution, Astron. Astrophys. 690, A144 (2024).
- S. Clesse and J. García-Bellido, Seven hints for primordial black hole dark matter, Phys. Dark Universe 22, 137 (2018).
- J. Calcino, J. Garcia-Bellido, and T. M. Davis, Updating the MACHO fraction of the Milky Way dark halowith improved mass models, Mon. Not. R. Astron. Soc. 479, 2889 (2018).
- B. Carr, S. Clesse, J. García-Bellido, and F. Kühnel, Cosmic conundra explained by thermal history and primordial black holes, Phys. Dark Universe 31, 100755 (2021).
- K. Jedamzik, Primordial black hole dark matter and the LIGO/Virgo observations, J. Cosmol. Astropart. Phys. 09 (2020) 022.
- K. Jedamzik, Consistency of primordial black hole dark matter with LIGO/Virgo merger rates, Phys. Rev. Lett. 126, 051302 (2021).
- R. G. Carlberg and C. J. Grillmair, Testing for dark matter in the outskirts of globular clusters, Astrophys. J. 922, 104 (2021).
- S. Mashchenko and A. Sills, Globular clusters with dark matter halos. II. Evolution in tidal field, Astrophys. J. 619, 258 (2005).
- J. Shin, S. S. Kim, and Y.-W. Lee, Dark matter content in globular cluster NGC 6397, J. Korean Astron. Soc. 46, 173 (2013).
- A. Sollima, F. R. Ferraro, L. Lovisi, F. Contenta, E. Vesperini, L. Origlia, E. Lapenna, B. Lanzoni, A. Mucciarelli, E. Dalessandro, and C. Pallanca, Searching in the dark: The dark mass content of the Milky Way globular clusters NGC288 and NGC6218, Mon. Not. R. Astron. Soc. 462, 1937 (2016).
- K. J. Mack, J. P. Ostriker, and M. Ricotti, Growth of structure seeded by primordial black holes, Astrophys. J. 665, 1277 (2007).
- M. Ricotti, Bondi accretion in the early universe, Astrophys. J. 662, 53 (2007).
- Y. N. Eroshenko, Dark matter density spikes around primordial black holes, Astron. Lett. 42, 347 (2016).
- A. Ireland, Dark spiky primordial black holes, Phys. Rev. D 111, 023513 (2025).
- R. D. Mathieu, The structure and internal kinematics of open clusters, Symp. â Int. Astron. Union 113, 427 (1985).
- J. G. Hills, The effect of low-velocity, low-mass intruders (collisionless gas) on the dynamical evolution of a binary system, Astron. J. 88, 1269 (1983).
- J. Binney and S. Tremaine, Galactic dynamics (1987).
- M. Xiang et al., Stellar mass distribution and star formation history of the Galactic disk revealed by mono-age stellar populations from LAMOST, Astrophys. J. Suppl. Ser. 237, 33 (2018).
- M. S. Nitschai, A.-C. Eilers, N. Neumayer, M. Cappellari, and H.-W. Rix, Dynamical model of the Milky Way using APOGEE and Gaia data, Astrophys. J. 916, 112 (2021).
- H.-W. Rix and J. Bovy, The Milky Way‘s stellar disk, Astron. Astrophys. Rev. 21, 61 (2013).