- Open Access
Top Yukawa coupling determination at high energy muon collider
Phys. Rev. D 109, 035021 – Published 27 February, 2024
DOI: https://doi.org/10.1103/PhysRevD.109.035021
Abstract
The Top Yukawa coupling profoundly influences several core mysteries linked to the electroweak scale and the Higgs boson. We study the feasibility of measuring the Top Yukawa coupling at high energy muon colliders by examining the high energy dynamics of the weak boson fusion to top quark pair processes. A deviation of the Top Yukawa coupling from the Standard Model would lead to a modified process, violating unitarity at high energy. Our analysis reveals that utilizing a muon collider with a center-of-mass energy of 10 TeV and an integrated luminosity of allows us to investigate the Top Yukawa coupling with a precision surpassing 1.5%, more than one order of magnitude better than the precision from channel at muon colliders. This precision represents a notable enhancement compared to the anticipated sensitivities of the High-Luminosity LHC (3.4%) and those at muon colliders derived from the process.
Physics Subject Headings (PhySH)
Article Text
References (60)
- G. Aad et al. (ATLAS Collaboration), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012).
- S. Chatrchyan et al. (CMS Collaboration), Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30 (2012).
- M. Boscolo, J.-P. Delahaye, and M. Palmer, The future prospects of muon colliders and neutrino factories, Rev. Accel. Sci. Techol. 10, 189 (2019).
- J. P. Delahaye, M. Diemoz, K. Long, B. Mansoulié, N. Pastrone, L. Rivkin, D. Schulte, A. Skrinsky, and A. Wulzer, Muon colliders, arXiv:1901.06150.
- H. Al Ali et al., The muon Smasher’s guide, Rep. Prog. Phys. 85, 084201 (2022).
- K. M. Black et al., Muon collider forum report, arXiv:2209.01318.
- M. Narain et al., The future of US particle physics—the snowmass 2021 energy frontier report, arXiv:2211.11084.
- T. Bose et al., Report of the topical group on physics beyond the standard model at energy frontier for snowmass 2021, arXiv:2209.13128.
- C. Aime et al., Muon collider physics summary, arXiv:2203.07256.
- D. Schulte, The muon collider, in Proceedings of the 13th International Particle Accelerator Conference, IPAC’22 (JACoW Publishing, Geneva, Switzerland, 2022), pp. 821–826, https://jacow.org/ipac2022/papers/tuizsp2.pdf.
- F. Zimmermann, Accelerator technology and beam physics of future colliders, Front. Phys. 10, 888395 (2022).
- J. de Blas, J. Gu, and Z. Liu, Higgs boson precision measurements at a 125 GeV muon collider, Phys. Rev. D 106, 073007 (2022).
- M. Forslund and P. Meade, High precision higgs from high energy muon colliders, J. High Energy Phys. 08 (2022) 185.
- M. Forslund and P. Meade, Precision Higgs width and couplings with a high energy muon collider, arXiv:2308.02633.
- A. M. Sirunyan et al. (CMS Collaboration), Measurement of the top quark Yukawa coupling from kinematic distributions in the dilepton final state in proton-proton collisions at , Phys. Rev. D 102, 092013 (2020).
- G. L. Kane, W. W. Repko, and W. B. Rolnick, The effective , approximation for high-energy collisions, Phys. Lett. 148B, 367 (1984).
- A. Costantini, F. De Lillo, F. Maltoni, L. Mantani, O. Mattelaer, R. Ruiz, and X. Zhao, Vector boson fusion at multi-TeV muon colliders, J. High Energy Phys. 09 (2020) 080.
- T. Han, Y. Ma, and K. Xie, High energy leptonic collisions and electroweak parton distribution functions, Phys. Rev. D 103, L031301 (2021).
- T. Han, Y. Ma, and K. Xie, Quark and gluon contents of a lepton at high energies, J. High Energy Phys. 02 (2022) 154.
- F. Garosi, D. Marzocca, and S. Trifinopoulos, LePDF: Standard model PDFs for high-energy lepton colliders, J. High Energy Phys. 09 (2023) 107.
- Y. Ma, Electroweak and Higgs physics at high energies, Ph.D. thesis, University of Pittsburgh (main), 2022.
- B. Fornal, A. V. Manohar, and W. J. Waalewijn, Electroweak gauge boson parton distribution functions, J. High Energy Phys. 05 (2018) 106.
- V. D. Barger, K.-m. Cheung, T. Han, and R. J. N. Phillips, Probing strongly interacting electroweak dynamics through ratios at future colliders, Phys. Rev. D 52, 3815 (1995).
- J. Bagger, V. D. Barger, K.-m. Cheung, J. F. Gunion, T. Han, G. A. Ladinsky, R. Rosenfeld, and C. P. Yuan, The strongly interacting system: Gold plated modes, Phys. Rev. D 49, 1246 (1994).
- T. Han, Strong scattering physics: A comparative study for the LHC, NLC and a muon collider, in Proceedings of the Ringberg Workshop: The Higgs Puzzle—What Can We Learn from LEP2, LHC, NLC, and FMC? (1997), pp. 197–206, arXiv:hep-ph/9704215.
- F. Larios, T. M. P. Tait, and C. P. Yuan, Anomalous couplings at the linear collider, Phys. Rev. D 57, 3106 (1998).
- F. Larios, E. Malkawi, and C. P. Yuan, Probing the electroweak symmetry breaking sector with the top quark, in Proceedings of the CCAST Workshop on Physics at TeV Energy Scale (1997), arXiv:hep-ph/9704288.
- B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, Dimension-six terms in the standard model Lagrangian, J. High Energy Phys. 10 (2010) 085.
- E. E. Jenkins, A. V. Manohar, and M. Trott, Renormalization group evolution of the standard model dimension six operators I: Formalism and lambda dependence, J. High Energy Phys. 10 (2013) 087.
- I. Brivio and M. Trott, The standard model as an effective field theory, Phys. Rep. 793, 1 (2019).
- B. Henning, X. Lu, and H. Murayama, How to use the standard model effective field theory, J. High Energy Phys. 01 (2016) 023.
- B. Henning, X. Lu, and H. Murayama, One-loop matching and running with covariant derivative expansion, J. High Energy Phys. 01 (2018) 123.
- J. A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer, and M. Pérez-Victoria, Handbook of vectorlike quarks: Mixing and single production, Phys. Rev. D 88, 094010 (2013).
- S. A. R. Ellis, R. M. Godbole, S. Gopalakrishna, and J. D. Wells, Survey of vector-like fermion extensions of the standard model and their phenomenological implications, J. High Energy Phys. 09 (2014) 130.
- J. M. Alves, G. C. Branco, A. L. Cherchiglia, C. C. Nishi, J. T. Penedo, P. M. F. Pereira, M. N. Rebelo, and J. I. Silva-Marcos, Vector-like singlet quarks: A roadmap, Phys. Rep. 1057, 1 (2024).
- V. Peralta, Phenomenology of vector-like fermions in physics beyond the standard model, Ph.D. thesis, Sao Paulo University, 2017, arXiv:1712.06193.
- J. Chen, T. Han, and B. Tweedie, Electroweak splitting functions and high energy showering, J. High Energy Phys. 11 (2017) 093.
- C. W. Bauer, N. Ferland, and B. R. Webber, Standard model parton distributions at very high energies, J. High Energy Phys. 08 (2017) 036.
- M. Ciafaloni, P. Ciafaloni, and D. Comelli, Bloch-Nordsieck violation in spontaneously broken Abelian theories, Phys. Rev. Lett. 87, 211802 (2001).
- V. Shtabovenko, R. Mertig, and F. Orellana, feyncalc 9.3: New features and improvements, Comput. Phys. Commun. 256, 107478 (2020).
- J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079.
- R. Ruiz, A. Costantini, F. Maltoni, and O. Mattelaer, The effective vector boson approximation in high-energy muon collisions, J. High Energy Phys. 06 (2022) 114.
- P. A. Zyla et al. (Particle Data Group), Review of particle physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
- R. L. Workman et al. (Particle Data Group), Review of particle physics, Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
- M. Chen and D. Liu, Top Yukawa coupling at the muon collider, arXiv:2212.11067.
- T. Han, Z. Liu, and J. Sayre, Potential precision on Higgs couplings and total width at the ILC, Phys. Rev. D 89, 113006 (2014).
- D. M. Asner et al., ILC Higgs white paper, in Snowmass 2013: Snowmass on the Mississippi (2013), arXiv:1310.0763.
- M. Ahmad et al., CEPC-SPPC preliminary conceptual design report. 1. Physics and detector, Report No. IHEP-CEPC-DR-2015-01, IHEP-TH-2015-01, IHEP-EP-2015-01.
- J. de Blas et al., Higgs boson studies at future particle colliders, J. High Energy Phys. 01 (2020) 139.
- M. Negrini (ATLAS and CMS Collaborations), Recent measurements of the top-quark mass and Yukawa coupling using the ATLAS and CMS detectors at the LHC, Proc. Sci. EPS-HEP2021 (2022) 479.
- M. Cepeda et al., Report from working group 2: Higgs physics at the HL-LHC and HE-LHC, CERN Yellow Rep. Monogr. 7, 221 (2019).
- T. Price, P. Roloff, J. Strube, and T. Tanabe, Full simulation study of the top Yukawa coupling at the ILC at , Eur. Phys. J. C 75, 309 (2015).
- A. Aryshev et al. (ILC International Development Team), The international linear collider: Report to snowmass 2021, arXiv:2203.07622.
- H. Abramowicz et al. (CLICdp Collaboration), Top-quark physics at the CLIC electron-positron linear collider, J. High Energy Phys. 11 (2019) 003.
- A. Abada et al. (FCC Collaboration), FCC physics opportunities: Future circular collider conceptual design report volume 1, Eur. Phys. J. C 79, 474 (2019).
- Z. Liu, K.-F. Lyu, I. Mahbub (2023), https://github.com/ZhenLiuPhys/WWtt-MuC.
- J. R. Ellis, M. K. Gaillard, and D. V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B106, 292 (1976).
- M. A. Shifman, A. I. Vainshtein, M. B. Voloshin, and V. I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30, 711 (1979).
- W. J. Marciano, C. Zhang, and S. Willenbrock, Higgs decay to two photons, Phys. Rev. D 85, 013002 (2012).
- H. M. Georgi, S. L. Glashow, M. E. Machacek, and D. V. Nanopoulos, Higgs bosons from two gluon annihilation in proton proton collisions, Phys. Rev. Lett. 40, 692 (1978).