Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

  • Open Access

Anomalous production of massive gauge boson pairs at muon colliders

Brad Abbott1, Aram Apyan2,*, Bianca Azartash-Namin1, Veena Balakrishnan1, Jeffrey Berryhill3, Shih-Chieh Hsu4, Sergo Jindariani3, Mayuri Prabhakar Kawale1, Elham E. Khoda4 et al.

Ryan Parsons1, Alexander Schuy4, Michael Strauss1, John Stupak1, and Connor Waits1

  • 1Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
  • 2Department of Physics, Brandeis University, Waltham, Massachusetts, USA
  • 3Fermi National Accelerator Laboratory, Batavia, Illinois, USA
  • 4Department of Physics, University of Washington, Seattle, Washington, USA

  • *arapyan@brandeis.edu

Phys. Rev. D 108, 093009 – Published 21 November, 2023

DOI: https://doi.org/10.1103/PhysRevD.108.093009

Abstract

The prospects of searches for anomalous production of hadronically decaying weak boson pairs at proposed high-energy muon colliders are reported. Muon-muon collision events are simulated at s=6, 10, and 30 TeV, corresponding to an integrated luminosity of 4, 10, and 10ab1, respectively. Simulated μμWW+νν/μμ events are used to set expected constraints on the structure of quartic vector boson interactions in the framework of a dimension-8 effective field theory. Similarly, μμWW/ZZ+νν events are used to report constraints on the product of the cross section and branching fraction for vector boson fusion production of a heavy neutral Higgs boson decaying to weak boson pairs. These results are interpreted in the context of the Georgi-Machacek model.

Physics Subject Headings (PhySH)

Article Text

References (65)

  1. B. W. Lee, C. Quigg, and H. B. Thacker, The strength of weak interactions at very high-energies and the Higgs boson mass, Phys. Rev. Lett. 38, 883 (1977).
  2. B. W. Lee, C. Quigg, and H. B. Thacker, Weak interactions at very high-energies: The role of the Higgs boson mass, Phys. Rev. D 16, 1519 (1977).
  3. O. J. P. Éboli, M. C. Gonzalez-Garcia, and J. K. Mizukoshi, ppjje±μ±νν and jje±μνν at O(αem6) and O(αem4αs2) for the study of the quartic electroweak gauge boson vertex at CERN LHC, Phys. Rev. D 74, 073005 (2006).
  4. E. d. S. Almeida, O. J. P. Éboli, and M. C. Gonzalez–Garcia, Unitarity constraints on anomalous quartic couplings, Phys. Rev. D 101, 113003 (2020).
  5. D. Espriu and B. Yencho, Longitudinal WW scattering in light of the Higgs boson discovery, Phys. Rev. D 87, 055017 (2013).
  6. J. Chang, K. Cheung, C.-T. Lu, and T.-C. Yuan, WW scattering in the era of post-Higgs-boson discovery, Phys. Rev. D 87, 093005 (2013).
  7. C. Accettura et al., Towards a muon collider, Eur. Phys. J. C 83, 864 (2023).
  8. A. Costantini, F. De Lillo, F. Maltoni, L. Mantani, O. Mattelaer, R. Ruiz, and X. Zhao, Vector boson fusion at multi-TeV muon colliders, J. High Energy Phys. 09 (2020) 080.
  9. H. Al Ali et al., The muon Smasher’s guide, Rep. Prog. Phys. 85, 084201 (2022).
  10. P. Bambade et al., The international linear collider: A global project, arXiv:1903.01629.
  11. T. K. Charles et al. (CLICdp and CLIC Collaborations), The compact linear collider (CLIC)—2018 summary report, arXiv:1812.06018.
  12. A. Abada et al. (FCC Collaboration), FCC-ee: The lepton collider: Future circular collider conceptual design report volume 2, Eur. Phys. J. Spec. Top. 228, 261 (2019).
  13. M. Dong et al. (CEPC Study Group), CEPC conceptual design report: Volume 2—physics & detector, arXiv:1811.10545.
  14. A. Abada et al. (FCC Collaboration), FCC-hh: The hadron collider: Future circular collider conceptual design report volume 3, Eur. Phys. J. Spec. Top. 228, 755 (2019).
  15. The CEPC Study Group, CEPC conceptual design report: Volume 1—accelerator, arXiv:1809.00285.
  16. N. Bartosik et al., Detector and physics performance at a muon collider, J. Instrum. 15, P05001 (2020).
  17. H. Georgi and M. Machacek, Doubly charged Higgs bosons, Nucl. Phys. B262, 463 (1985).
  18. C. Englert, E. Re, and M. Spannowsky, Triplet Higgs boson collider phenomenology after the LHC, Phys. Rev. D 87, 095014 (2013).
  19. C. Englert, E. Re, and M. Spannowsky, Pinning down Higgs triplets at the LHC, Phys. Rev. D 88, 035024 (2013).
  20. D. de Florian et al. (LHC Higgs Cross Section Working Group), Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922.
  21. M. Zaro and H. Logan, Recommendations for the interpretation of LHC searches for H50, H5±, and H5±± in vector boson fusion with decays to vector boson pairs, CERN Report No. LHCHXSWG-2015-001, 2015, https://cds.cern.ch/record/2002500.
  22. G. Aad et al. (ATLAS Collaboration), Evidence for electroweak production of W±W±jj in pp collisions at s=8TeV with the ATLAS detector, Phys. Rev. Lett. 113, 141803 (2014).
  23. V. Khachatryan et al. (CMS Collaboration), Study of vector boson scattering and search for new physics in events with two same-sign leptons and two jets, Phys. Rev. Lett. 114, 051801 (2015).
  24. A. M. Sirunyan et al. (CMS Collaboration), Observation of electroweak production of same-sign W boson pairs in the two jet and two same-sign lepton final state in proton-proton collisions at s=13TeV, Phys. Rev. Lett. 120, 081801 (2018).
  25. M. Aaboud et al. (ATLAS Collaboration), Measurement of W±W± vector boson scattering and limits on anomalous quartic gauge couplings with the ATLAS detector, Phys. Rev. D 96, 012007 (2017).
  26. G. Aad et al. (ATLAS Collaboration), Measurements of W±Z production cross sections in pp collisions at s=8TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings, Phys. Rev. D 93, 092004 (2016).
  27. A. M. Sirunyan et al. (CMS Collaboration), Measurement of electroweak WZ boson production and search for new physics in WZ+ two jets events in pp collisions at s=13TeV, Phys. Lett. B 795, 281 (2019).
  28. A. M. Sirunyan et al. (CMS Collaboration), Measurement of vector boson scattering and constraints on anomalous quartic couplings from events with four leptons and two jets in proton-proton collisions at s=13TeV, Phys. Lett. B 774, 682 (2017).
  29. V. Khachatryan et al. (CMS Collaboration), Evidence for exclusive γγW+W production and constraints on anomalous quartic gauge couplings in pp collisions at s=7 and 8 TeV, J. High Energy Phys. 08 (2016) 119.
  30. V. Khachatryan et al. (CMS Collaboration), Measurement of the cross section for electroweak production of Zγ in association with two jets and constraints on anomalous quartic gauge couplings in proton–proton collisions at s=8TeV, Phys. Lett. B 770, 380 (2017).
  31. V. Khachatryan et al. (CMS Collaboration), Measurement of electroweak-induced production of Wγ with two jets in pp collisions at s=8TeV and constraints on anomalous quartic gauge couplings, J. High Energy Phys. 06 (2017) 106.
  32. M. Aaboud et al. (ATLAS Collaboration), Studies of Zγ production in association with a high-mass dijet system in pp collisions at s=8TeV with the ATLAS detector, J. High Energy Phys. 07 (2017) 107.
  33. M. Aaboud et al. (ATLAS Collaboration), Search for anomalous electroweak production of WW/WZ in association with a high-mass dijet system in pp collisions at s=8TeV with the ATLAS detector, Phys. Rev. D 95, 032001 (2017).
  34. A. M. Sirunyan et al. (CMS Collaboration), Search for anomalous electroweak production of vector boson pairs in association with two jets in proton-proton collisions at 13 TeV, Phys. Lett. B 798, 134985 (2019).
  35. A. M. Sirunyan et al. (CMS Collaboration), Measurements of production cross sections of WZ and same-sign WW boson pairs in association with two jets in proton-proton collisions at s=13TeV, Phys. Lett. B 809, 135710 (2020).
  36. A. M. Sirunyan et al. (CMS Collaboration), Evidence for electroweak production of four charged leptons and two jets in proton-proton collisions at s=13TeV, Phys. Lett. B 812, 135992 (2021).
  37. A. M. Sirunyan et al. (CMS Collaboration), Observation of electroweak production of Wγ with two jets in proton-proton collisions at s=13TeV, Phys. Lett. B 811, 135988 (2020).
  38. A. Tumasyan et al. (CMS Collaboration), Measurement of the electroweak production of Zγ and two jets in proton-proton collisions at s=13TeV and constraints on anomalous quartic gauge couplings, Phys. Rev. D 104, 072001 (2021).
  39. A. Dainese, M. Mangano, A. B. Meyer, A. Nisati, G. Salam, and M. A. Vesterinen, Report on the physics at the HL-LHC, and Perspectives for the HE-LHC, Technical Report No. CERN-2019-007, Geneva, Switzerland, 2019, https://cds.cern.ch/record/2703572?ln=en.
  40. C. Fleper, W. Kilian, J. Reuter, and M. Sekulla, Scattering of W and Z bosons at high-energy lepton colliders, Eur. Phys. J. C 77, 120 (2017).
  41. G. Aad et al. (ATLAS Collaboration), Search for a charged Higgs boson produced in the vector-boson fusion mode with decay H±W±Z using pp collisions at s=8TeV with the ATLAS experiment, Phys. Rev. Lett. 114, 231801 (2015).
  42. A. M. Sirunyan et al. (CMS Collaboration), Search for charged Higgs bosons produced via vector boson fusion and decaying into a pair of W and Z bosons using pp collisions at s=13TeV, Phys. Rev. Lett. 119, 141802 (2017).
  43. A. M. Sirunyan et al. (CMS Collaboration), Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in proton–proton collisions at s=13TeV, Eur. Phys. J. C 81, 723 (2021).
  44. G. Aad et al. (ATLAS Collaboration), Search for resonant WZ production in the fully leptonic final state in proton–proton collisions at s=13TeV with the ATLAS detector, Eur. Phys. J. C 83, 633 (2023).
  45. R. Frederix and S. Frixione, Merging meets matching in MC@NLO, J. High Energy Phys. 12 (2012) 061.
  46. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079.
  47. M. Moretti, T. Ohl, and J. Reuter, O’Mega: An optimizing matrix element generator, arXiv:hep-ph/0102195.
  48. W. Kilian, T. Ohl, and J. Reuter, WHIZARD: Simulating multi-particle processes at LHC and ILC, Eur. Phys. J. C 71, 1742 (2011).
  49. ATLAS Collaboration, Combined effective field theory interpretation of W±Zjj and W±W±jj measurements using ATLAS 13 TeV data, Technical Report, CERN, Geneva, 2023, all figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-002.
  50. T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191, 159 (2015).
  51. J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, and M. Selvaggi (DELPHES 3 Collaboration), DELPHES 3, A modular framework for fast simulation of a generic collider experiment, J. High Energy Phys. 02 (2014) 057.
  52. M. Cacciari, G. P. Salam, and G. Soyez, FastJet user manual, Eur. Phys. J. C 72, 1896 (2012).
  53. M. Boronat, J. Fuster, I. Garcia, E. Ros, and M. Vos, A robust jet reconstruction algorithm for high-energy lepton colliders, Phys. Lett. B 750, 95 (2015).
  54. S. S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Stat. 9, 60 (1938).
  55. G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71, 1554 (2011); 73, 2501(E) (2013).
  56. K. Arnold et al., VBFNLO: A parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun. 180, 1661 (2009).
  57. J. Baglio et al., VBFNLO: A parton level Monte Carlo for processes with electroweak bosons—manual for version 2.7.0, arXiv:1107.4038.
  58. J. Baglio, J. Bellm, F. Campanario, B. Feigl, J. Frank, T. Figy, M. Kerner, L. D. Ninh, S. Palmer, M. Rauch, R. Roth, F. Schissler, O. Schlimpert, and D. Zeppenfeld, Release note—VBFNLO 2.7.0, arXiv:1404.3940.
  59. G. Aad et al., Observation of electroweak W±Z boson pair production in association with two jets in pp collisions at s=13TeV with the ATLAS detector, Phys. Lett. B 793, 469 (2019).
  60. ATLAS Collaboration, Prospects for the measurement of the W±W± scattering cross section and extraction of the longitudinal scattering component in pp collisions at the High-Luminosity LHC with the ATLAS experiment, Technical Report, CERN, Geneva, 2018, https://cds.cern.ch/record/2652447.
  61. ATLAS Collaboration, Expected performance of the ATLAS detector at the High-Luminosity LHC, Technical Report, CERN, Geneva, 2019, https://cds.cern.ch/record/2655304.
  62. J.-C. Yang, X.-Y. Han, Z.-B. Qin, T. Li, and Y.-C. Guo, Measuring the anomalous quartic gauge couplings in the W+WW+W process at muon collider using artificial neural networks, J. High Energy Phys. 09 (2022) 074.
  63. T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).
  64. A. L. Read, Presentation of search results: The CLs technique, J. Phys. G 28, 2693 (2002).
  65. G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71, 1554 (2011); 71, 2501(E) (2011).

Outline

Information

Sign In to Your Journals Account

Filter

Filter

Article Lookup

Enter a citation