Abstract
We study the vacuum fluctuations of a quantum scalar field in the presence of a thin and inhomogeneous flat mirror, modeled with a delta potential. Using heat-kernel techniques, we evaluate the Euclidean effective action perturbatively in the inhomogeneities (nonperturbatively in the constant background). We show that the divergences can be absorbed into a local counterterm and that the remaining finite part is in general a nonlocal functional of the inhomogeneities, which we compute explicitly for massless fields in dimensions. For time-independent inhomogeneities, the effective action gives the Casimir self-energy for a partially transmitting mirror. For time-dependent inhomogeneities, the Wick-rotated effective action gives the probability of particle creation due to the dynamical Casimir effect.
- Received 22 October 2020
- Accepted 3 February 2021
DOI:https://doi.org/10.1103/PhysRevD.103.065006
Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
Published by the American Physical Society


