
Y. Nakamura, J. Takahashi, Y. Yamanaka, and S. Ohkubo

(Received 10 August 2018; published 15 October 2018)

DOI: 10.1103/PhysRevC.98.049901

It was found that numerical calculations involving the Bogoliubov–de Gennes (BdG) modes with $\ell = 2$ and 4 were incorrect in the original paper. The results of the calculations affected are in Figs. 2, 3, 5–8 and in Table 1. We revise them with the correct figures and table. The parameter sets A and B are updated according to the parameter fitting in Figs. 2 and 5: the parameter sets A ($\Omega = 1.80$, $V_r = 422$ MeV) and B ($\Omega = 2.42$, $V_r = 399$ MeV). The qualitative discussion presented in the original paper remains essentially intact because the numerical results have only slightly changed.

![Diagram](image)

FIG. 2. Nambu-Goldstone-Higgs [(NGH), dotted lines] and BdG (solid and dashed lines) excitation energies with $\ell = 0$, 2, and 4 as a function of Ω when $V_r = 422$ MeV is fixed. The horizontal lines indicate the excitation energies of the observed α cluster states in 12C [1–6], and the vertical line is a guide to the eye.
Fig. 3. The calculated energy levels for parameter set A ($\Omega = 1.80$, $V_r = 422$ MeV), compared with the observed α cluster states in 12C [1–6].

Fig. 5. NGH (dotted lines) and BdG (solid and dashed lines) excitation energies with $\ell = 0, 2,$ and 4 as a function of V_r for fixed $\bar{r} = 3.8$ fm.

Fig. 6. The calculated energy levels for parameter set B ($\Omega = 2.42$, $V_r = 399$ MeV).
FIG. 7. Numerical solutions of (a) $\xi(r)$, (b) $\eta(r)$, (c) $U_{12}(r)$, $V_{12}(r)$, and (d) $U_{14}(r)$, $V_{14}(r)$ for the parameter sets A and B.

FIG. 8. Calculated $|\Psi_1(q)|^2$ for parameter sets A and B.

TABLE I. Calculated reduced transition probabilities $B(E2; 2^+ \rightarrow 0^+)$ in units of e^2 fm4: Refs. [7,8] and our results for parameter sets A and B.

<table>
<thead>
<tr>
<th>Transition</th>
<th>Ref. [7]</th>
<th>Ref. [8]</th>
<th>Ours (A)</th>
<th>Ours (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^+_2 \rightarrow 0^+_1$</td>
<td>100</td>
<td>295–340</td>
<td>280</td>
<td>142</td>
</tr>
<tr>
<td>$2^+_2 \rightarrow 0^+_1$</td>
<td>310</td>
<td>88–220</td>
<td>296</td>
<td>104</td>
</tr>
</tbody>
</table>