
M. Belmeguenai, M. S. Gabor, F. Zighem, Y. Roussigné, D. Faurie, and C. Tiusan
(Received 12 October 2016; published 31 October 2016)

DOI: 10.1103/PhysRevB.94.139902

This paper was published online with an error in the y labels of Figs. 6(a), 6(c), 7(a), and 7(c). Indeed, a factor of 10^7 has been forgotten in units of the y axes of these figures. The y labels for the figures have been corrected (see below).

FIG. 6. Annealing temperature dependence of (a) the volume and (b) the surface effective perpendicular anisotropy constants in the two regimes below and above the critical thickness. Variation of the different contributions of the (c) magnetocrystalline ($K_{mc\perp}$) and the volume ($K_{me\perp}$) magnetoelastic and (d) the Néel-type interface ($K_{II\perp}$) and the surface ($K_{II\perp}$) anisotropy constants for the perpendicular anisotropy. The data in (c) and (d) were obtained from the measurements presented in (a) and (b) using Eqs. (6) and (7). The symbols refer to measurements, and the solid lines are used as guides to the eye. The dashed lines refer to grid lines for zero.

FIG. 7. Annealing temperature dependence of (a) the volume and (b) the surface effective in-plane fourfold anisotropy constants in the two regimes below and above the critical thickness. Variation of the different contributions of the (c) magnetocrystalline (K_{mc4}) and the volume (K_{mev4}) magnetoelastic and (d) the Néel-type interface (K_{II4}) and the surface (K_{II4}) anisotropy constants for the in-plane fourfold anisotropy. The data in (c) and (d) were obtained from the measurements presented in (a) and (b) using Eqs. (6) and (7) by replacing the subscript \perp by 4. The symbols refer to measurements, and the solid lines are used as guides to the eye. The dashed lines refer to grid lines for zero.