
B. Sriram Shastry
(Received 9 June 2006; published 7 July 2006)

DO: 10.1103/PhysRevB.74.039901 PACS number: 72.15.Jf, 65.90.+i, 71.27.+a, 99.10.Cd

We correct three equations below. All related discussion is unchanged.

(i) Equation (41) should read as:

\[Z^*T = \frac{\langle \Phi^{s\tau} \rangle^2}{\langle \Theta^{s\tau}(x^{s\tau}) \rangle}. \]

(41)

(ii) The sentence containing Eqs. (87) and (88) should read:

This together with \(\mu/k_B T = \ln[n/2(1-n)] + O(\beta^2 t^2) \) gives us the result for \(0 \leq n \leq 1 \)

\[S^* = \frac{k_B}{q_e} \left\{ \ln \left[\frac{2(1-n)}{n} \right] - \beta t \frac{2-n}{2} + O(\beta^2 t^2) \right\}, \]

(87)

and

\[S^* = -\frac{k_B}{q_e} \left\{ \ln \left[\frac{2(n-1)}{2-n} \right] + \beta t \frac{n}{2} + O(\beta^2 t^2) \right\}, \]

(88)

for \(1 \leq n \leq 2 \) using particle hole symmetry \(t \rightarrow -t, n \rightarrow 2-n, q_e \rightarrow -q_e \), with \(q_e = -|e| \).