Errata: d-orbital theory and high-pressure effects upon the EPR spectrum of ruby
Zhao Min-Guang, Xu Ji-An, Bai Gui-Ru, and Xie Huong-Sen

This paper contains the following misprints:

1. Equations (17) should read

\[E(3E_g) = -1.2\Delta + 9B + 3C \]
\[E(3T2) = 15B + 4C - 1.2\Delta \]

2. Equation (20) should read

\[E(\pm \frac{1}{2}) - E(\pm \frac{1}{2}) \approx N^2 V \left[\frac{4}{9[E^2(T2) - E^2(A_2)]^2} - \frac{4}{9[E^2(T2) - E^2(A_2)]^2} \right]
\]
\[+ \frac{2\sqrt{2}}{3[E^2(T1) - E^2(A)] [E^2(T1a) - E^2(A_2)]} \]
\[+ \frac{2\sqrt{2}}{3[E^2(T2) - E^2(A_2)] [E^2(T1a) - E^2(A_2)]} \]

3. Equation (22) should read

\[N^2 V = N^2(-3D\sigma - \frac{20}{7}D\tau) = 903 \]

Erratum: ESR study of the Kondo effect in Au171Yb and Au174Yb
Y. von Spalden, E. Tsang, K. Baberschke, and P. Schlottmann

We were informed by Dr. Bonville, Saclay, that for comparison between Mössbauer relaxation rates and ESR the data in Fig. 2 of Ref. 20 [F. Gonzalez-Jimenez and P. Imbert, Solid State Commun. 13, 85 (1973)] have to be multiplied by a factor of 2 in our Fig. 4, yielding, for example, 180 MHz/K at 4.2 K. This gives a remarkably good agreement at high T (\(\approx 4\) K) in our Figs. 4 and 6.

A nonconsistent notation for the transversal and longitudinal parts of \(\chi\) or \(T^{-1}\), respectively, produced a confusion in the calculation of the ESR relaxation rates. The correct interpretation is that ESR measures only the second equation of Eq. (6). A fit of our data in Figs. 4 and 6 yields \(T_K = 0.5 \times 10^{-8}\) K. This figure agrees even better with the g-value shift \(T_K\) (Table II). In this notation the Mössbauer and ESR relaxations are equal at high T.

The (a) part of the caption of Fig. 1 contains two misprints: The correct values should read \(T = 130\) mK and \(H_{res} = 242.4\) G.