Waveguides with a silver lining: Low threshold gain and giant modal gain in active cylindrical and coaxial plasmonic devices

Amr A. E. Saleh and Jennifer A. Dionne
Phys. Rev. B 85, 045407 – Published 5 January 2012

Abstract

Loss is one of the most substantial impediments to integrated plasmonics. In this paper, we present a theoretical analysis of active cylindrical plasmon slot waveguides, including their modal characteristics, gain spectra, and lasing threshold. Particular attention is given to two classes of waveguide geometries composed of various core/channel/cladding materials: a dielectric/dielectric/metal (DDM) waveguide and a metal/dielectric/metal (MDM) waveguide. Using empirically determined optical constants, we systematically study the dispersion, propagation length, threshold gain, modal gain, and confinement factor of these slot structures. For DDM waveguides, we show that introducing the gain in the channel rather than the core is of paramount importance for reduced threshold gain and increased modal gain. Confinement factor enhancement is even more pronounced in MDM waveguides, where modal gain can exceed threshold gain by 10× to 100× across visible and near-infrared frequencies. By carefully tuning the core/channel relative dimensions along with the lasing frequency, we show that threshold gain as low as 500 cm1 is achievable in cylindrical plasmonic devices with overall diameters less than 200 nm. Our results indicate the promise of plasmonic slot structures for low-loss optical networking, and provide a roadmap for the design of optimized nanoscale plasmonic laser cavities.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 16 August 2011

DOI:https://doi.org/10.1103/PhysRevB.85.045407

©2012 American Physical Society

Authors & Affiliations

Amr A. E. Saleh1,2 and Jennifer A. Dionne1

  • 1Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
  • 2Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 85, Iss. 4 — 15 January 2012

Reuse & Permissions
Access Options
Event
Physics Next Workshops
March 20, 2017

The American Physical Society is initiating a new series of international workshops. These Physics Next workshops will be aimed at fostering new and emerging areas of physics research, focusing on topics that straddle traditional subject boundaries and are starting to “emerge from the noise.”

The first workshop is titled “Physics Next: Materials Design and Discovery,” and will take place on May 15 -17, 2017. More information.

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×