Erratum: Quantum theory of the stability region of an ion in a Paul trap

Wang Kelin, Feng Mang, and Wu Juhao

PACS number(s): 32.80.Pj, 03.65.Ge, 33.80.Ps, 42.50.Vk, 99.10.+g

We would like to correct a typographical error in our publication. Equation (19) should be revised as

\[
B_0 = (mc/u)^{1/4},
\]

(19)

\[
B_k = \frac{1}{mk^2 \omega^2 B_0^3 - 4uB_0^3} \left[-m \omega^2 F_k^1 + m \omega^2 F_k^2 + 2 + u F_k^4 + v F_k^{4-1} \right].
\]

Erratum: Distribution of electrons in double photoionization of helium and heavier atoms in the asymptotic region

E. G. Drukarev

Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188350, Russia

To avoid misunderstanding, the following insertions should be made in the text:

1. This paragraph should follow the one containing Eq. (6): To obtain the energy distribution it is crucial to take into account that the electrons can exchange by hard photons carrying large momenta of the order \(p_1 \gg \eta \) [1]. While \(J/\epsilon, \ll 1 \) the interaction can be included in the lowest order of perturbative theory. This is illustrated by Figs. 1(b) and 1(c), where the final-state and intermediate-state electrons are described by free functions. The initial state is described by the function \(\Psi(r_1, r_2) \).

2. After Eq. (23) it should read: Here, as well as in Eq. (4), the hard photon exchange is included in the function \(\psi(r_1, r_2) \). This leads to \(i(eV_1)\Psi(r_1, r_2) \sim 4 \pi a m [(e \rho)/\rho] \Psi(r_1, r_1) \).