Erratum: K-shell ionization probability in close collisions of 7—12-MeV protons
with targets of \(Z = 24—83 \)
M. Dost, S. Hoppenau, J. Kising, S. Röhl, and P. Schorn

On page 701, the right-hand side, starting at line 29, should read “In still more distant collisions, the projectile charge becomes ineffective. When taking the just described binding (\(B \)) and polarization (\(P \)) distortions into account in the perturbed stationary-state approximation employed by Basbas et al.\(^{29} \) one obtains the solid curves in Figs. 6 and 7(a).”

Erratum: Theory of atom-diatom reactive scattering based on the distorted-wave Born approximation
Sung Ho Suck

The following errors do not affect various derivations and final results described in the paper.

1. \(n_b j_b m_b \to n_a j_a m_a \) in Eq. (7) should read \(n_a j_a m_a \to n_b j_b m_b \).
2. \(\mathcal{M}_2 \) should be removed in Eq. (22).
3. “Orthonormalized as” should be removed in the sentence which describes Eq. (25).
4. In Eq. (26) change \(Y_{L_b}^{M_b} (R_b) \hat{Y}_{L_b}^{M_b} (K_b) \) into \(Y_{L_b}^{-M_b} (R_b) Y_{L_b}^{-M_b} (K_b) \).
5. In Eq. (29) change \(F_{L_a L_b}^{l_a l_b} \) into \(F_{L_a L_b}^{l_a l_b} \), and \(Y_{L_b}^{M_b} (R_b) \) and \(Y_{L_b}^{M_b} (K_b) \) into \(Y_{L_b}^{-M_b} (R_b) \) and \(Y_{L_b}^{-M_b} (K_b) \).
6. \((—y|m|−m)² \) in Eqs. (33), (44), and (49) should read \((—y|m|+m)² \). However, this factor does not affect the final expressions of the differential and total cross sections.
7. \(\langle j_i | —\lambda_i m_i | —\mu_i j_i m_i \rangle \) should read \(\langle j_i \lambda_i m_i | —\mu_i j_i m_i \rangle \) in Eq. (40).

Erratum: Theory of structure and properties of cholesteric blue phases
R. M. Hornreich and S. Shtrikman

We would like to make the following corrections.
In Eq. (2b) the middle elements of the first and last matrices should be \((—1) \) rather than \((1) \).
The next-to-the-last line in the left-hand column, p. 637, should read “the states \(\langle 110;1 \rangle \) and \(\langle 200;2 \rangle \). The . . .”.