Mode coupling in a He-Ne ring laser with backscattering

R. J. C. Spreeuw, R. Centeno Neelen, N. J. van Druten, E. R. Eliel, and J. P. Woerdman
Phys. Rev. A 42, 4315 – Published 1 October 1990
PDFExport Citation

Abstract

An alternative approach is proposed to discuss mode coupling in bidirectional ring lasers that is induced by backscattering. It is shown that various features can be simply discussed in terms of the mode structure of the corresponding passive ring cavity. The nature of the backscattering is found to play a crucial role in determining the normal-mode structure. For instance, we show theoretically that, for a rotating ring laser (gyro), the characteristics of frequency locking are already present in the passive-mode structure if the mode coupling has a dissipative nature, i.e., if the backscattering originates in localized losses. If, on the other hand, the backscattering has a conservative nature, i.e., originates in steps of the refractive index, a frequency splitting is found in the passive-mode structure, making so-called oscillatory instability possible. Experimental observations are reported to support this point of view. The recently reported π-phase jumps in He-Ne ring lasers are shown to fit naturally into this scheme. These jumps can be described as transitions between the normal modes of the passive ring cavity.

  • Received 18 May 1990

DOI:https://doi.org/10.1103/PhysRevA.42.4315

©1990 American Physical Society

Authors & Affiliations

R. J. C. Spreeuw, R. Centeno Neelen, N. J. van Druten, E. R. Eliel, and J. P. Woerdman

  • Huygens Laboratory, University of Leiden, P.O. Box 9504, 2300 RA Leiden, The Netherlands

References (Subscription Required)

Click to Expand
Issue

Vol. 42, Iss. 7 — October 1990

Reuse & Permissions
Access Options

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×