- Open Access
Spontaneous torque on an inhomogeneous chiral body out of thermal equilibrium
Phys. Rev. A 111, 022815 – Published 25 February, 2025
DOI: https://doi.org/10.1103/PhysRevA.111.022815
Abstract
In a previous paper we showed that an inhomogeneous body in vacuum will experience a spontaneous force if it is not in thermal equilibrium with its environment. This is due to the asymmetric asymptotic radiation pattern such an object emits. We demonstrated this self-propulsive force by considering an expansion in powers of the electric susceptibility: A torque arises in first order, but only if the material constituting the body is nonreciprocal. No force arises in first order. A force does occur for bodies made of ordinary (reciprocal) materials in second order. Here we extend these considerations to the torque. As one would expect, a spontaneous torque will also appear on an inhomogeneous chiral object if it is out of thermal equilibrium with its environment. Once a chiral body starts to rotate, it will experience a small quantum frictional torque, but much more important, unless a mechanism is provided to maintain the nonequilibrium state, is thermalization: The body will rapidly reach thermal equilibrium with the vacuum, and the angular acceleration will essentially become zero. For a small, or even a large, inhomogeneous chiral body, a terminal angular velocity will result, which seems to be in the realm of observability.
Physics Subject Headings (PhySH)
Article Text
References (51)
- E. V. Teodorovich, Contribution of macroscopic van der Waals interactions to frictional force, Proc. R. Soc. A 362, 71 (1978).
- L. S. Levitov, Van der Waals friction, Europhys. Lett. 8, 499 (1989).
- J. B. Pendry, Shearing the vacuum—Quantum friction, J. Phys.: Condens. Matter 9, 10301 (1997).
- A. I. Volokitin and B. N. J. Persson, Theory of friction: The contribution from a fluctuating electromagnetic field, J. Phys.: Condens. Matter 11, 345 (1999).
- G. V. Dedkov and A. A. Kyasov, The relativistic theory of fluctuation electromagnetic interactions of moving neutral particles with a flat surface, Phys. Solid State 45, 1815 (2003).
- P. C. W. Davies, Quantum vacuum friction, J. Opt. B 7, S40 (2005).
- G. Barton, On van der Waals friction. II: Between atom and half-space, New J. Phys. 12, 113045 (2010).
- R. Zhao, A. Manjavacas, F. J. G. de Abajo, and J. B. Pendry, Rotational quantum friction, Phys. Rev. Lett. 109, 123604 (2012).
- M. G. Silveirinha, Theory of quantum friction, New J. Phys. 16, 063011 (2014).
- G. Pieplow and C. Henkel, Cherenkov friction on a neutral particle moving parallel to a dielectric, J. Phys.: Condens. Matter 27, 214001 (2015).
- F. Intravaia, V. E. Mkrtchian, S. Y. Buhmann, S. Scheel, D. A. R. Dalvit, and C. Henkel, Friction forces on atoms after acceleration, J. Phys.: Condens. Matter 27, 214020 (2015).
- J. S. Høye, I. Brevik, and K. A. Milton, The reality of Casimir friction, Symmetry 8, 29 (2016).
- G. V. Dedkov and A. A. Kyasov, Nonlocal friction forces in the particle-plate and plate-plate configurations: Nonretarded approximation, Surf. Sci. 700, 121681 (2020).
- M. B. Farías, F. C. Lombardo, A. Soba, P. L. Villar, and R. Decca, Towards detecting traces of non-contact quantum friction in the corrections of the accumulated geometric phase, npj Quantum Inf. 6, 25 (2020).
- M. Oelschläger, Fluctuation-induced phenomena in nanophotonic systems, Ph.D. thesis, Institut für Physik, Humboldt Universität zu Berlin, 2020.
- G. V. Dedkov, Nonequilibrium Casimir-Lifshitz friction force and anomalous radiation heating of a small particle, Appl. Phys. Lett. 121, 231603 (2022).
- T.-B. Wang, Y. Zhou, H.-Q. Mu, K. Shehzad, D.-J. Zhang, W.-X. Liu, T.-B. Yu, and Q.-H. Liao, Enhancement of lateral Casimir force on a rotating body near a hyperbolic material, Nanotechnology 33, 245001 (2022).
- I. Brevik, B. Shapiro, and M. G. Silveirinha, Fluctuational electrodynamics in and out of equilibrium, Int. J. Mod. Phys. A 37, 2241012 (2022).
- Z. Xu, P. Ju, K. Shen, Y. Jin, Z. Jacob, and T. Li, Observation on non-contact Casimir friction, arXiv:2403.06051.
- A. Einstein and L. Hopf, Statistische untersuchung der bewegung eines resonators in einem strahlungsfeld, Ann. Phys. (Leipzig) 338, 1105 (1910).
- V. Mkrtchian, V. A. Parsegian, R. Podgornik, and W. M. Saslow, Universal thermal radiation drag on neutral objects, Phys. Rev. Lett. 91, 220801 (2003).
- G. V. Dedkov and A. A. Kyasov, Tangential force and heating rate of a neutral relativistic particle mediated by equilibrium background radiation, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 599 (2010).
- G. Łach, M. DeKieviet, and U. D. Jentschura, Einstein-Hopf drag, Doppler shift of thermal radiation and blackbody drag: Three perspectives on quantum friction, Cent. Eur. J. Phys. 10, 763 (2012).
- G. Pieplow and C. Henkel, Fully covariant radiation force on a polarizable particle, New J. Phys. 15, 023027 (2013).
- A. I. Volokitin, Friction force at the motion of a small relativistic neutral particle with respect to blackbody radiation, JETP Lett. 101, 427 (2015).
- A. I. Volokitin and B. N. J. Persson, Electromagnetic Fluctuations at the Nanoscale (Springer-Verlag, Berlin, 2017).
- X. Guo, K. A. Milton, G. Kennedy, W. P. McNulty, N. Pourtolami, and Y. Li, Energetics of quantum vacuum friction: Field fluctuations, Phys. Rev. D 104, 116006 (2021).
- X. Guo, K. A. Milton, G. Kennedy, W. P. McNulty, N. Pourtolami, and Y. Li, Energetics of quantum vacuum friction. II: Dipole fluctuations and field fluctuations, Phys. Rev. D 106, 016008 (2022).
- D. Reiche, F. Intravaia, J.-T. Hsiang, K. Busch, and B.-L. Hu, Nonequilibrium thermodynamics of quantum friction, Phys. Rev. A 102, 050203(R) (2020).
- C. Khandekar, S. Buddhiraju, P. R. Wilkinson, J. K. Gimzewski, A. W. Rodriguez, C. Chase, and S. Fan, Nonequilibrium lateral force and torque by thermally excited nonreciprocal surface electromagnetic waves, Phys. Rev. B 104, 245433 (2021).
- D. Gelbwaser-Klimovsky, N. Graham, M. Kardar, and M. Krüger, Near field propulsion forces from nonreciprocal media, Phys. Rev. Lett. 126, 170401 (2021).
- M. Krüger, T. Emig, and M. Kardar, Nonequilibrium electromagnetic fluctuations: Heat transfer and interactions, Phys. Rev. Lett. 106, 210404 (2011).
- A. Ott, P. Ben-Abdallah, and S.-A. Biehs, Circular heat and momentum flux radiated by magneto-optical nanoparticles, Phys. Rev. B 97, 205414 (2018).
- M. F. Maghrebi, A. V. Gorshkov, and J. D. Sau, Fluctuation-induced torque on a topological insulator out of thermal equilibrium, Phys. Rev. Lett. 123, 055901 (2019).
- D. Pan, H. Xu, and F. J. García de Abajo, Magnetically activated rotational vacuum friction, Phys. Rev. A 99, 062509 (2019).
- C. Khandekar and Z. Jacob, Thermal spin photonics in the near-field of nonreciprocal media, New J. Phys. 21, 103030 (2019).
- H. C. Fogedby and A. Imparato, Autonomous quantum rotator, Europhys. Lett. 122, 10006 (2018).
- C. Guo and S. Fan, Theoretical constraints on reciprocal and non-reciprocal many-body radiative heat transfer, Phys. Rev. B 102, 085401 (2020).
- Y. Guo and S. Fan, A single gyrotropic particle as a heat engine, ACS Photon. 8, 1623 (2021).
- B. Strekha, S. Molesky, P. Chao, M. Krüger, and A. Rodriguez, Trace expressions and associated limits for non-equilibrium Casimir torque, Phys. Rev. A 106, 042222 (2022).
- L. Ge, Negative vacuum friction in terahertz gain systems, Phys. Rev. B 108, 045406 (2023).
- V. S. Asadchy, M. S. Mirmoosa, A. Diaz-Rubio, S. Fan, and S. A. Tretyakov, Tutorial on electromagnetic nonreciprocity and its origins, Proc. IEEE 108, 1684 (2020).
- K. A. Milton, X. Guo, G. Kennedy, N. Pourtolami, and D. M. DelCol, Vacuum torque, propulsive forces, and anomalous tangential forces: Effects of nonreciprocal media out of thermal equilibrium, Phys. Rev. A 108, 022809 (2023).
- G. Kennedy, Quantum torque on a non-reciprocal body out of thermal equilibriium and induced by a magnetic field of arbitrary strength, Eur. Phys. J. Spec. Top. 232, 3197 (2023).
- L. Zhu, Y. Guo, and S. Fan, Theory of many-body radiative heat transfer without the constraint of reciprocity, Phys. Rev. B 97, 094302 (2018).
- B. Müller and M. Krüger, Anisotropic particles near surfaces: Propulsive force and friction, Phys. Rev. A 93, 032511 (2016).
- M. T. H. Reid, O. D. Miller, A. G. Polimeridis, A. W. Rodriguez, E. M. Tomlinson, and S. G. Johnson, Photon torpedoes and Rytov pinwheels: Integral-equation modeling of non-equilibrium fluctuation-induced forces and torques on nanoparticles, arXiv:1708.01985.
- K. A. Milton, N. Pourtolami, and G. Kennedy, Quantum self-propulsion of an inhomogeneous object out of thermal equilibrium, Phys. Rev. A 110, 042814 (2024).
- J. R. Deop-Ruano, F. J. García de Abajo, and A. Manjavacas, Thermal radiation forces on planar structures with asymmetric optical response, Nanophotonics 13, 4569 (2024).
- K. Milton and J. Schwinger, Classical Electrodynamics, 2nd ed. (CRC, Boca Raton, FL, 2024).
- A. Lambrecht and S. Reynaud, Casimir force between metallic mirrors, Eur. Phys. J. D 8, 309 (2000).