Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

  • Open Access

Spontaneous torque on an inhomogeneous chiral body out of thermal equilibrium

Kimball A. Milton1,*, Nima Pourtolami2,†, and Gerard Kennedy3,‡

  • *Contact author: kmilton@ou.edu
  • Contact author: nima.pourtolami@gmail.com
  • Contact author: g.kennedy@soton.ac.uk

Phys. Rev. A 111, 022815 – Published 25 February, 2025

DOI: https://doi.org/10.1103/PhysRevA.111.022815

Abstract

In a previous paper we showed that an inhomogeneous body in vacuum will experience a spontaneous force if it is not in thermal equilibrium with its environment. This is due to the asymmetric asymptotic radiation pattern such an object emits. We demonstrated this self-propulsive force by considering an expansion in powers of the electric susceptibility: A torque arises in first order, but only if the material constituting the body is nonreciprocal. No force arises in first order. A force does occur for bodies made of ordinary (reciprocal) materials in second order. Here we extend these considerations to the torque. As one would expect, a spontaneous torque will also appear on an inhomogeneous chiral object if it is out of thermal equilibrium with its environment. Once a chiral body starts to rotate, it will experience a small quantum frictional torque, but much more important, unless a mechanism is provided to maintain the nonequilibrium state, is thermalization: The body will rapidly reach thermal equilibrium with the vacuum, and the angular acceleration will essentially become zero. For a small, or even a large, inhomogeneous chiral body, a terminal angular velocity will result, which seems to be in the realm of observability.

Physics Subject Headings (PhySH)

Article Text

References (51)

  1. E. V. Teodorovich, Contribution of macroscopic van der Waals interactions to frictional force, Proc. R. Soc. A 362, 71 (1978).
  2. L. S. Levitov, Van der Waals friction, Europhys. Lett. 8, 499 (1989).
  3. J. B. Pendry, Shearing the vacuum—Quantum friction, J. Phys.: Condens. Matter 9, 10301 (1997).
  4. A. I. Volokitin and B. N. J. Persson, Theory of friction: The contribution from a fluctuating electromagnetic field, J. Phys.: Condens. Matter 11, 345 (1999).
  5. G. V. Dedkov and A. A. Kyasov, The relativistic theory of fluctuation electromagnetic interactions of moving neutral particles with a flat surface, Phys. Solid State 45, 1815 (2003).
  6. P. C. W. Davies, Quantum vacuum friction, J. Opt. B 7, S40 (2005).
  7. G. Barton, On van der Waals friction. II: Between atom and half-space, New J. Phys. 12, 113045 (2010).
  8. R. Zhao, A. Manjavacas, F. J. G. de Abajo, and J. B. Pendry, Rotational quantum friction, Phys. Rev. Lett. 109, 123604 (2012).
  9. M. G. Silveirinha, Theory of quantum friction, New J. Phys. 16, 063011 (2014).
  10. G. Pieplow and C. Henkel, Cherenkov friction on a neutral particle moving parallel to a dielectric, J. Phys.: Condens. Matter 27, 214001 (2015).
  11. F. Intravaia, V. E. Mkrtchian, S. Y. Buhmann, S. Scheel, D. A. R. Dalvit, and C. Henkel, Friction forces on atoms after acceleration, J. Phys.: Condens. Matter 27, 214020 (2015).
  12. J. S. Høye, I. Brevik, and K. A. Milton, The reality of Casimir friction, Symmetry 8, 29 (2016).
  13. G. V. Dedkov and A. A. Kyasov, Nonlocal friction forces in the particle-plate and plate-plate configurations: Nonretarded approximation, Surf. Sci. 700, 121681 (2020).
  14. M. B. Farías, F. C. Lombardo, A. Soba, P. L. Villar, and R. Decca, Towards detecting traces of non-contact quantum friction in the corrections of the accumulated geometric phase, npj Quantum Inf. 6, 25 (2020).
  15. M. Oelschläger, Fluctuation-induced phenomena in nanophotonic systems, Ph.D. thesis, Institut für Physik, Humboldt Universität zu Berlin, 2020.
  16. G. V. Dedkov, Nonequilibrium Casimir-Lifshitz friction force and anomalous radiation heating of a small particle, Appl. Phys. Lett. 121, 231603 (2022).
  17. T.-B. Wang, Y. Zhou, H.-Q. Mu, K. Shehzad, D.-J. Zhang, W.-X. Liu, T.-B. Yu, and Q.-H. Liao, Enhancement of lateral Casimir force on a rotating body near a hyperbolic material, Nanotechnology 33, 245001 (2022).
  18. I. Brevik, B. Shapiro, and M. G. Silveirinha, Fluctuational electrodynamics in and out of equilibrium, Int. J. Mod. Phys. A 37, 2241012 (2022).
  19. Z. Xu, P. Ju, K. Shen, Y. Jin, Z. Jacob, and T. Li, Observation on non-contact Casimir friction, arXiv:2403.06051.
  20. A. Einstein and L. Hopf, Statistische untersuchung der bewegung eines resonators in einem strahlungsfeld, Ann. Phys. (Leipzig) 338, 1105 (1910).
  21. V. Mkrtchian, V. A. Parsegian, R. Podgornik, and W. M. Saslow, Universal thermal radiation drag on neutral objects, Phys. Rev. Lett. 91, 220801 (2003).
  22. G. V. Dedkov and A. A. Kyasov, Tangential force and heating rate of a neutral relativistic particle mediated by equilibrium background radiation, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 599 (2010).
  23. G. Łach, M. DeKieviet, and U. D. Jentschura, Einstein-Hopf drag, Doppler shift of thermal radiation and blackbody drag: Three perspectives on quantum friction, Cent. Eur. J. Phys. 10, 763 (2012).
  24. G. Pieplow and C. Henkel, Fully covariant radiation force on a polarizable particle, New J. Phys. 15, 023027 (2013).
  25. A. I. Volokitin, Friction force at the motion of a small relativistic neutral particle with respect to blackbody radiation, JETP Lett. 101, 427 (2015).
  26. A. I. Volokitin and B. N. J. Persson, Electromagnetic Fluctuations at the Nanoscale (Springer-Verlag, Berlin, 2017).
  27. X. Guo, K. A. Milton, G. Kennedy, W. P. McNulty, N. Pourtolami, and Y. Li, Energetics of quantum vacuum friction: Field fluctuations, Phys. Rev. D 104, 116006 (2021).
  28. X. Guo, K. A. Milton, G. Kennedy, W. P. McNulty, N. Pourtolami, and Y. Li, Energetics of quantum vacuum friction. II: Dipole fluctuations and field fluctuations, Phys. Rev. D 106, 016008 (2022).
  29. D. Reiche, F. Intravaia, J.-T. Hsiang, K. Busch, and B.-L. Hu, Nonequilibrium thermodynamics of quantum friction, Phys. Rev. A 102, 050203(R) (2020).
  30. C. Khandekar, S. Buddhiraju, P. R. Wilkinson, J. K. Gimzewski, A. W. Rodriguez, C. Chase, and S. Fan, Nonequilibrium lateral force and torque by thermally excited nonreciprocal surface electromagnetic waves, Phys. Rev. B 104, 245433 (2021).
  31. D. Gelbwaser-Klimovsky, N. Graham, M. Kardar, and M. Krüger, Near field propulsion forces from nonreciprocal media, Phys. Rev. Lett. 126, 170401 (2021).
  32. M. Krüger, T. Emig, and M. Kardar, Nonequilibrium electromagnetic fluctuations: Heat transfer and interactions, Phys. Rev. Lett. 106, 210404 (2011).
  33. A. Ott, P. Ben-Abdallah, and S.-A. Biehs, Circular heat and momentum flux radiated by magneto-optical nanoparticles, Phys. Rev. B 97, 205414 (2018).
  34. M. F. Maghrebi, A. V. Gorshkov, and J. D. Sau, Fluctuation-induced torque on a topological insulator out of thermal equilibrium, Phys. Rev. Lett. 123, 055901 (2019).
  35. D. Pan, H. Xu, and F. J. García de Abajo, Magnetically activated rotational vacuum friction, Phys. Rev. A 99, 062509 (2019).
  36. C. Khandekar and Z. Jacob, Thermal spin photonics in the near-field of nonreciprocal media, New J. Phys. 21, 103030 (2019).
  37. H. C. Fogedby and A. Imparato, Autonomous quantum rotator, Europhys. Lett. 122, 10006 (2018).
  38. C. Guo and S. Fan, Theoretical constraints on reciprocal and non-reciprocal many-body radiative heat transfer, Phys. Rev. B 102, 085401 (2020).
  39. Y. Guo and S. Fan, A single gyrotropic particle as a heat engine, ACS Photon. 8, 1623 (2021).
  40. B. Strekha, S. Molesky, P. Chao, M. Krüger, and A. Rodriguez, Trace expressions and associated limits for non-equilibrium Casimir torque, Phys. Rev. A 106, 042222 (2022).
  41. L. Ge, Negative vacuum friction in terahertz gain systems, Phys. Rev. B 108, 045406 (2023).
  42. V. S. Asadchy, M. S. Mirmoosa, A. Diaz-Rubio, S. Fan, and S. A. Tretyakov, Tutorial on electromagnetic nonreciprocity and its origins, Proc. IEEE 108, 1684 (2020).
  43. K. A. Milton, X. Guo, G. Kennedy, N. Pourtolami, and D. M. DelCol, Vacuum torque, propulsive forces, and anomalous tangential forces: Effects of nonreciprocal media out of thermal equilibrium, Phys. Rev. A 108, 022809 (2023).
  44. G. Kennedy, Quantum torque on a non-reciprocal body out of thermal equilibriium and induced by a magnetic field of arbitrary strength, Eur. Phys. J. Spec. Top. 232, 3197 (2023).
  45. L. Zhu, Y. Guo, and S. Fan, Theory of many-body radiative heat transfer without the constraint of reciprocity, Phys. Rev. B 97, 094302 (2018).
  46. B. Müller and M. Krüger, Anisotropic particles near surfaces: Propulsive force and friction, Phys. Rev. A 93, 032511 (2016).
  47. M. T. H. Reid, O. D. Miller, A. G. Polimeridis, A. W. Rodriguez, E. M. Tomlinson, and S. G. Johnson, Photon torpedoes and Rytov pinwheels: Integral-equation modeling of non-equilibrium fluctuation-induced forces and torques on nanoparticles, arXiv:1708.01985.
  48. K. A. Milton, N. Pourtolami, and G. Kennedy, Quantum self-propulsion of an inhomogeneous object out of thermal equilibrium, Phys. Rev. A 110, 042814 (2024).
  49. J. R. Deop-Ruano, F. J. García de Abajo, and A. Manjavacas, Thermal radiation forces on planar structures with asymmetric optical response, Nanophotonics 13, 4569 (2024).
  50. K. Milton and J. Schwinger, Classical Electrodynamics, 2nd ed. (CRC, Boca Raton, FL, 2024).
  51. A. Lambrecht and S. Reynaud, Casimir force between metallic mirrors, Eur. Phys. J. D 8, 309 (2000).

Outline

Information

Sign In to Your Journals Account

Filter

Filter

Article Lookup

Enter a citation