values of $n_{LM}=1.77$, $n_{LM}=1.44$, $n_{LM}=1.36$ with estimated errors $\leq 10\%$. The number of M vacancies per total L vacancy, $n_{LM}=V_{LM}/\sum N_i$, is therefore between 1.4 and 1.8, depending on the initial L_r-subshell vacancy distribution. These measured quantities can be compared with estimates obtained by comparing the average charges of ions produced by the ejection of an L- or M-shell electron, respectively, from an initially neutral atom. The value for Hg($Z=80$) obtained this way from Ref. 3 is $n_{LM}=1.3$, in agreement with our results for $Z=83$.

The quantities $n_{A\beta B\gamma}$, where $A_i=K, L_i, M_i, \ldots$ and $B_j=L_j, M_j, \ldots$, give a more detailed insight into the process of ionization multiplication starting from an inner-shell vacancy and ending with a multiply charged ion. These quantities are of importance in measurements with external sources of orbital-electron-capture ratios; e.g., n_{LM} for M/L capture-ratio measurements is similar to n_{KL} for L/K capture-ratio measurements from x-ray intensities with external sources. Future high-resolution Auger-electron spectroscopy and Ge(Li) or Si(Li) x-ray spectroscopy should give values for these quantities for additional elements.

Errata

Angular Distribution of the $d(p, n)2p$ Reaction at 45.5 MeV, Demetrius J. Margaziotis, Byron T. Wright, and W. T. H. van Oers [Phys. Rev. 171, 1170 (1968)]. Owing to an error in the reduction of the data, the ordinate of the energy spectra (Fig. 9–15) and the experimental values of the differential cross section (Fig. 16) should be multiplied by 2.27, 2.57, 2.46, 2.04, 2.11, 1.93, and 1.86 for the angles 5°, 10°, 15°, 20°, 25°, 30°, and 35°, respectively.

Short-Range Dynamical Correlations in 7Li from Electron Elastic Scattering, Claudio Ciofi degli Atti [Phys. Rev. 175, 1256 (1968)]. In the caption of Fig. 1 the phrase “dotted line” should read “broken line” and the sentence, “The broken line was obtained in the same way as the full line but with $b=0$,” should be omitted.