estimated from the so-called isobaric-spin term of the optical potential of the form $(4/A) V_1(t \cdot T)$.

Using $V_1 = 24$ MeV, the energy separation of this term corresponding to the two particle levels $T' = 3/2$ and $3/2$ ($T' = t + T; I = \frac{t}{2}$, $T = T_0 = 2$ for Ni60) is 4 MeV, which is in good agreement with the experimental splitting energy, $21.5 - 17 = 4.5$ MeV. In Ref. 3, it is estimated that in the nickel region, the ratio G_{γ}/G_γ is primarily determined by the geometrical factor, namely, the ratio of the squares of the Clebsch-Gordan coefficients appearing in the dipole matrix elements:

$$\frac{G_{\gamma}}{G_\gamma} \propto \left| \frac{C(T_01T_01; T_00)}{C(T_01T_01; T_00)} \right|^2 = \frac{1}{T_0}.$$

This estimate gives $1/T_0 = 0.5$ for Ni60 ($T_0 = 2$) within the experimental limits given in Eq. (1).

Finally, we want to point out that the anomalously large difference in the magnitudes of (γ, n) cross sections of Ni58 and Ni60 is essentially due to the fact that for these isotopes the isobaric spin is small, thus causing a large fluctuation in the ratio $G_{\gamma}/G_\gamma \approx 1/T_0$ in going from one isotope to the other; as the number of excess neutrons increases, the ratio remains relatively constant, and the magnitudes of the (γ, n) cross sections in heavier nuclei will exhibit little change between neighboring isotopes. This fact seems to be borne out by the data on molybdenum and zirconium isotopes.

The author wishes to thank Dr. A. K. Kerman, Dr. L. Zamick, and Dr. B. M. Spicer for helpful discussion.

\[\text{8 B. M. Spicer (private communication).}\]

\[\text{9 B. L. Berman et al., Phys. Rev. 162, 1089 (1967).}\]

Errata

Brueckner-Hartree-Fock Calculations of Spherical Nuclei in an Harmonic-Oscillator Basis, K. T. R. Davies, M. Baranger, R. M. Tarbutton, and T. T. S. Kuo [Phys. Rev. 177, 1519 (1969)]. On page 1523, in Table I, the values of $-H_0/A$ should be changed to 3.75 (16O), 4.10 (40Ca), 3.65 (48Ca), and 2.80 (208Pb).

Unitary Models of Nuclear Resonance Reactions, P. A. Moldauer [Phys. Rev. 157, 907 (1967)]. In Table I, last column, second line, the expression for W^α should read

$$\frac{1 + (s^2 + r^2)(1 + r^2) - 2sr}{1 + (s^2 - r^2)(1 + r^2) - 2sr + 2i(s - r + sr^2)},$$

Equation (96) should read

$$\frac{\langle \sigma_{\gamma} N^2 \rangle - \bar{\sigma}_{\gamma}^2}{\bar{\sigma}_{\gamma}^2} = \frac{1}{2} \frac{(l_1 + l_2)^2 + (1 + l_1)l_2}{(l_1 + l_2) (1 + l_1)} - 1,$$

and in Table II, the entry for the cross-section mean-squared fluctuation of the cosecant model should read 0 instead of 3.