Correlation of the Mössbauer Isomer Shift and the Residual Electrical Resistivity for 197Au Alloys, Louis D. Roberts, Richard L. Becker, F. E. Obenshain, and J. O. Thomson [Phys. Rev. 137, A895 (1965)]. A factor η_A was omitted from Eqs. (33) and (35). The correct equations are
\[
\Delta \rho/c = 9.00 \times 10^{-7} (k_F/e\hbar) \sigma u(k_{FA}) \eta_A^{-1}.
\]
(33)
\[
\sum \delta_i \sin^2[\delta_i(k_{FA}) - \delta_{i+1}(k_{FA})] = (0.703 \eta_A^{1/3} r_A)(\Delta \rho/c).
\]
(35)

The results of a new calculation including this correction are shown in Figs. 6 and 7 below. For η_A, the s-band filling of the host is increased somewhat in the cases of Pt and Pd, however. We are indebted to Dr. Rex J. Snodgrass for calling our attention to the omission of η_A from the above equations.

Injection Mechanisms in GaAs Diffused Electro-luminescent Junctions, R. C. C. Leite, J. C. Sarace, D. H. Olson, B. G. Cohen, J. M. Whelan, and A. Yariv [Phys. Rev. 137, A1583 (1965)]. In the first line following Eq. (6), the symbol \hbar is to be replaced by \hbar.

Alpha-Particle Continuum States, P. Szylwik and C. Werntz [Phys. Rev. 138, B866 (1965)]. In the paper it was concluded that the second excited state of the alpha-particle is probably $L = 1$, $S = 0$, and $T = 0$. This was based on the fact that the corresponding phase shift started from 180° at zero energy, seemingly indicating a bound state below threshold in our model. However, there must always be a node (besides the one at the origin) in the single-particle wave function for the fourth nucleon in this channel because a 1p-like state corresponds to a center-of-mass oscillation.

In Fig. 3 it is shown that the largest p-wave phase shift is that of the $S = 1$, $T = 0$ state. Assuming that spin-orbit splitting widely splits the triplet states, one could assign a spin and parity of either 2^-, 1^-, or 0^- to the resonance at 22.2 MeV. In any case the isotopic spin is 0. An assignment of 2^- is suggested by the work of Baz' and Smorodinski, [Zh. Ekperim. i Teor. Fiz. 27, 382 (1954)], and Tombrello [Phys. Rev. 138, B40 (1965)]. The latter author shows that in the $T = 1$, $S = 1$, p waves the phase shift in the 2^- state is the largest.

Model for Calculating Independent Radiochemical Yields from the Thermal-Neutron Fission of 235U, J. M. Ferguson and P. A. Read [Phys. Rev. 139, B56 (1965)]. An error was made in the labeling of the ordinates of Figs. 7, 8, and 9. The left-hand ordinate should be labeled heavy fragment, and the right-hand side should be labeled light fragment, instead of as shown. This error applies only to the preparation of the graphs, and was not made in the actual calculation.