Errata

Muon Decay in Nuclear Emulsion at 25 000 Gauss, G. R. Lynch, J. Orear, and S. Rosendorff [Phys. Rev. 118, 284 (1960)]. The number in the seventh sentence of the third paragraph of the second column on page 286 should read "1/\sqrt{2}" rather than "1/2."

Paramagnetic Resonance and Optical Spectra of Divalent Iron in Cubic Fields. I. Theory, W. Low and M. Wegner [Phys. Rev. 118, 1119 (1960)]. In Appendix II there is an error in computation. The final result should read

\[(d\|U^4\|d) = 3(70)^1Dq.\]

This reduces the estimate of the shift caused by the configuration interaction with \(d^2p\) and \(d^2f\) to less than 400 cm\(^{-1}\). This is a small fraction of the separation between the \(\Gamma_2\) and \(\Gamma_5\) levels. The simple crystal field theory is, therefore, apparently applicable in the tetrahedrally coordinated substances.

In the Introduction it was stated that the complete matrices and results are being submitted to the American Documentation Institute. They have, however, only been submitted to the U. S. Air Force. Readers interested in this material may apply for Technical Note No. 14 of Contract No. AF61(052)-59.

Gamma Rays from Deuteron Stripping Reactions, G. R. Satchler and W. Tobocman [Phys. Rev. 118, 1566 (1960)]. The first equation in the last column of page 1569 should read

\[(2j+1)P = \pm \mathcal{S}[\langle 1 - d_{20}\rangle^2 - (288/35) \langle d_{44}\rangle^2].\]

Hyperfine Structure of the 6 \(^1P_2\) State of \(^{199}\)Hg and \(^{201}\)Hg. Properties of Metastable States of Mercury, Mark N. McDermott and William L. Lichten [Phys. Rev. 119, 134 (1960)]. The right-hand side of the equation on the top of page 142 should be multiplied by a factor of 1/16.

Cartesian Tensor Scalar Product and Spherical Harmonic Expansions in Boltzmann's Equation, T. Wyatt Johnston [Phys. Rev. 120, 1103 (1960)]. After Eq. (3), the factor \(\sin\theta\) in the definition of the spherical harmonic \(Y_{lm}\) should be admitted. In Eqs. (14) and (15) there should be an "\(x\)" symbol between \(w_0\) and \{\(f_i\)\} and \{\(f_j\)\}, respectively. In footnote 16, for "\(f_i'\)" read "\(f_i\)".