Photodetachment of O_2^-, D. S. Burch, S. J. Smith, and L. M. Branscomb [Phys. Rev. 112, 171 (1958)]. On page 173, column two, under “B. Results”: in the fourth line, replace (2.38 ev) with (2.30 ev); at the end of the seventh line, replace (1.27 ± 0.18) with (1.59 ± 0.18). On page 174, column one, under “B. Results”: instead of the values given for A_0 and A_1 read: $A_0 = 0.370 \times 10^{-18}$ cm2 ev$^{-1/2}$, $A_1 = -0.071 \times 10^{-18}$ cm2 ev$^{-1/2}$.

Surface Transport Theory, Jay N. Zemel [Phys. Rev. 112, 762 (1958)]. The coefficient of E^2 in Eq. (16), B_n in Eq. (21), and R in Eq. (22) should all be negative.

$$\sigma(n,2n) = \sigma_{s} = \left[1 - \left(\frac{E_n - S_n}{\theta} \right) \exp \left(\frac{-E_n + S_n}{\theta} \right) \right].$$

Conductivity of Plasma to Microwaves, P. H. Fang [Phys. Rev. 113, 13 (1959)]. Equation (6b) should read:

$$J_z = \frac{\hbar}{2 \pi} \Im \chi(x).$$

The numerical calculations are, however, correct.

Decay of Nb^{42}, Harry I. West, Jr., Lloyd G. Mann, and Glen M. Iddings [Phys. Rev. 113, 881 (1959)]. It was erroneously stated that the measurements of Kraushaar and Goldhaber determined the first transition in the 2+, 2+, 0 decay of Ir191 to be $M1 = 98\%$. Actually they obtained $M1 = 2\%$.

Decay of Hyperons and Mesons from the Universal Fermi Interaction, Akihiko Fuji and Masaaki Kawaguchi [Phys. Rev. 113, 1156 (1959)]. Equation (2.4) should read:

$$w(Y \rightarrow N+\pi) = \left(fM_0 \right)^2 \frac{g_s^2}{4\pi} \frac{1}{(2\pi)^4} \times \left[\frac{(M - M_0)^2 - m_s^2}{M} \right] \times \left[\frac{(M^2 - M_0^2 - m_s^2)}{M^2 M_0^2} \right] \times M \left| C_s(Y \rightarrow N+\pi) \right|^2.$$