used in his work, his results should probably pertain to LiF and NaF, not to LiCl and NaCl, respectively" This led to disagreement with experiment, Mr. H. Mimura, of Professor Inui’s group, now informs us that a complete recalculaton of the M-center wave functions shows that correct values of the interionic distance (4.86 atomic units for LiCl and 5.32 atomic units for NaCl) were used in the actual calculations of Inui et al., even through the wrong values were given in their article. Thus their original theoretical energy values are indeed correctly stated for LiCl and NaCl, respectively, and the A1B1 transitions agree quite well with the observed M bands. Their predicted A1B2 transition corresponds to 297 m\(\mu\) for NaCl, and it agrees tolerably well with our value of 345 m\(\mu\); this agreement should serve as a further spur to a diligent search for this band in various crystals. Mr. Mimura has also carried through the LCAO calculations for LiF and NaF, even though he did not expect the LCAO method to work well in these cases because of the large overlap. The A1B1 transition for NaF was computed as 537 m\(\mu\), in good agreement with experiment. For LiF, however, the predicted A1B1 transition was 843 m\(\mu\), in clear disagreement with experiment, while the point-ion lattice method gave good agreement even in this case. We are indebted to Professor Inui and Mr. Mimura for their communications.

We regret that two names were omitted from the acknowledgments. We are indebted to Dr. J. A. Krumhansl and Dr. L. C. Amadott for stimulating discussions of our work.

Associated Production in Pion-Nucleon Collisions and Charge Independence, Saul Barshay [Phys. Rev. 107, 1454 (1957)]. The sign between the two terms in the coupling form should be positive. In the text, the references to the \(\Sigma^+\) particle should read as references to the \(\Sigma^-\) particle. The remark in parentheses should read: "with about the same total cross section as the \(\Sigma^0\) and about one-third that of the \(\Lambda^\circ\).

The observation of parity nonconservation\(^1\) in the decay of the hyperons produced in these collisions implies that the production reactions polarized these particles. The partial wave amplitudes given by the Born approximation calculation all have the same phase and hence give zero polarization. One must probably appeal to resonance denominators in the one-meson and higher terms in order to obtain complex amplitudes, and hence some polarization.

I would like to thank Dr. G. Feinberg for useful discussion.

Extension of the WKB Equation, Charles E. Hecht and Joseph E. Mayer [Phys. Rev. 106, 1156 (1957)]. On page 1160 under Eq. (42) the sentence "We shall now show that this is no more than a formal difficulty and" should be changed to "We shall now show that the continuum of solutions for \(\varepsilon_1\) demonstrated by Ballinger and March does not in anyway invalidate our equations and"

The original paper of Ballinger and March raised the point of the ambiguity of \(\varepsilon_1\) in connection with a different physical problem. Nothing in our paper bears on the connection with this other problem, and we apologize that our sentence might be so interpreted.

Relativistic Wave Equations for Spin 2 Particles with Unique Mass, O. Brulin and S. Hjalmar [Phys. Rev. 107, 1730 (1957)]. Addendum.—There is another possible choice of the arbitrary constants, giving unique mass, namely \(k_2 = (-5/3)k_1\). With this choice, the divergence of the vector and the trace of the tensor vanish separately.

Inherent Noise of Quantum-Mechanical Amplifiers, M. W. P. Strandberg [Phys. Rev. 105, 617 (1957)]. Equation (9) on page 619 should read:

\[
\text{Noise figure} = \frac{1}{\langle \hat{p}_r(T_\lambda) \rangle} \left[\frac{\langle g+1 \rangle^2}{g^2} \left(\langle \hat{p}_r(T_\lambda) \rangle + (1 - t) \langle \hat{p}_r(T) \rangle \right) + \frac{Q_0}{Q_\nu} \left[\langle \hat{p}_r(T_\lambda) \rangle - \langle \hat{p}_r(T) \rangle \right] - \left(\frac{g-1}{g+1} \right) \langle \hat{p}_r(T_\lambda) \rangle + g^2 \langle \hat{p}_r(T) \rangle \right].
\]

Magnetoresistance of Holes in Germanium and Silicon with Warped Energy Surfaces, J. G. Mavroides and Benjamin Lax [Phys. Rev. 107, 1530 (1957)]. In Eqs. (5) the numerical factors for \(\sigma_{xyy}\) and \(\sigma_{xxy}\) should read 21.3 instead of 0.213.

Computation of Noise Figure for Quantum-Mechanical Amplifiers, M. W. P. Strandberg [Phys. Rev. 107, 1483 (1957)]. Equation (7) on page 1484 should read:

\[
\text{Noise figure} = \frac{1}{\langle \hat{p}_r(T_\lambda) \rangle} \left[\frac{\langle g+1 \rangle^2}{g^2} \left(\langle \hat{p}_r(T_\lambda) \rangle + (1 - t) \langle \hat{p}_r(T) \rangle \right) + \frac{Q_0}{Q_\nu} \left[\langle \hat{p}_r(T_\lambda) \rangle - \langle \hat{p}_r(T) \rangle \right] - \left(\frac{g-1}{g+1} \right) \langle \hat{p}_r(T_\lambda) \rangle + g^2 \langle \hat{p}_r(T) \rangle \right].
\]