in a magnetic field of 200,000 gauss, the spin of \(L^0 \) would precess through an angle of 33° in \(3 \times 10^{-10} \) sec if its magnetic moment is one nuclear Bohr magneton.

* On leave of absence from Columbia University, New York, New York.
4 It has been pointed out before that the magnetic moment of a hyperon may be measured by using the angular asymmetries in the hyperon decay as an analyzer. M. Goldhaber, Phys. Rev. 101, 1828 (1956).

Errata

Meson Production by Mesons, Saul Barshay [Phys. Rev. 103, 1102 (1956)]. In Eq. (9),

\[
\exp [i (-k_1 - p_a - p_m) \cdot y]
\]

should read:

\[
\exp [i (-k_1 - p_a + p_m) \cdot y].
\]

In Eq. (21), \(\cos 2(\theta_1 - \theta_2) \) should read: \(\cos 2(\phi_1 - \phi_2) \).

In comparing Table I with experiment it would be best (in view of the static model of the nucleon used here) to take the energies given under the heading "Incident-meson kinetic energy" as total available kinetic energies in the pion-nucleon center-of-mass system. The cross sections given are then somewhat larger in magnitude than those given in the work of Franklin on this subject. Large production cross sections near threshold have been found in recent important measurements in the U.S.S.R.

Field Effect in Germanium at High Frequencies, H. C. Montgomery [Phys. Rev. 105, 441 (1957)]. The field effect mobility appropriate to Fig. 5(c) is \(\mu_2 - \mu_1' + \mu_1 + \alpha \mu_n ' \) and not \(\mu_2 + \alpha \mu_n ' \) as stated. Hence, the difference between low- and high-frequency field effect mobility does not contain the Schrieffer correction, and a determination as discussed in the second paragraph on p. 445 is not only impractical, as stated, but is not possible in principle from small signal measurements. The author is indebted to Dr. Ichiro Nakada for pointing this out.

Angular Distribution of Protons from the Ca\(^{48}(d,p)\)-Ca\(^{48}\) Reaction, C. K. Bockelman, C. M. Braams, C. P. Browne, W. W. Buechner, R. R. Sharp, and A. Sperduto [Phys. Rev. 107, 176 (1957)]. On p. 180, line 9, "it is seen that a large value of \(R = 7.5 \times 10^{-13} \) cm is needed to fit the theoretical maximum of Fig. 5 to the experimental maximum from \(\beta \)-decay evidence" should read: "it is seen that a large value of \(r = 7.5 \times 10^{-13} \) cm is needed to fit the theoretical maximum of Fig. 5 to the experimental maximum. The third excited state at 0.991 Mev is believed to be a \(\frac{3}{2}^+ \) state from \(\beta \)-decay evidence."

Approximate Wave Functions for the M-Center by the Point-Ion Lattice Method, Barry S. Gourary and Perry J. Luke [Phys. Rev. 107, 960 (1957)]. In footnote 5 of this paper, we wrote: "Professor Inui has kindly checked his calculations and finds that because of the values of the interionic distance..."