Abstract
Diamond-anvil-cell techniques have been developed to confine and measure hydrogen samples under static conditions to pressures above 300 GPa from 12 to 300 K using synchrotron infrared and optical absorption techniques. A decreasing absorption threshold in the visible spectrum is observed, but the material remains transparent at photon energies down to 0.1 eV at pressures to 360 GPa over a broad temperature range. The persistence of the strong infrared absorption of the vibron characteristic of phase III indicates the stability of the paired state of hydrogen. There is no evidence for the predicted metallic state over these conditions, in contrast to recent reports, but electronic properties consistent with semimetallic behavior are observed.
- Received 26 December 2011
DOI:
© 2012 American Physical Society