Dynamics of viscoplastic deformation in amorphous solids

Phys. Rev. E 57, 7192 – Published 1 June 1998
M. L. Falk and J. S. Langer


We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically, reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system on the history of past deformations. Microscopic observations suggest that a dynamically complete description of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain average features of a population of two-state shear transformation zones. Our introduction of these state variables into the constitutive equations for this system is an extension of earlier models of creep in metallic glasses. In the treatment presented here, we specialize to temperatures far below the glass transition and postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transformation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenomena seen in the simulations.

DOI: http://dx.doi.org/10.1103/PhysRevE.57.7192

  • Received 11 December 1997
  • Published in the issue dated June 1998

© 1998 The American Physical Society

Authors & Affiliations

M. L. Falk and J. S. Langer

  • Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106

References (Subscription Required)

Authorization Required




Log In



Article Lookup
Paste a citation or DOI

Enter a citation
  1. Enter a citation to look up or terms to search.

    Ex: "PRL 112 068103", "Phys. Rev. Lett. 112, 068103", "10.1103/PhysRevLett.112.068103"