Non-Abelian symmetries of stochastic processes: Derivation of correlation functions for random-vertex models and disordered-interacting-particle systems

Gunter Schütz and Sven Sandow
Phys. Rev. E 49, 2726 – Published 1 April 1994
PDFExport Citation

Abstract

We consider systems of particles hopping stochastically on d-dimensional lattices with space-dependent probabilities. We map the master equation onto an evolution equation in a Fock space where the dynamics are given by a quantum Hamiltonian (continuous time) or a transfer matrix (discrete time). Using non-Abelian symmetries of these operators we derive duality relations, expressing the time evolution of a given initial configuration in terms of correlation functions of simpler dual processes. Particularly simple results are obtained for the time evolution of the density profile. As a special case we show that for any SU(2) symmetric system the two-point and three-point density correlation functions in the N-particle steady state can be computed from the probability distribution of a single particle moving in the same environment. We apply our results to various models, among them partial exclusion, a simple diffusion-reaction system, and the two-dimensional six-vertex model with space-dependent vertex weights. For a random distribution of the vertex weights one obtains a version of the random-barrier model describing diffusion of particles in disordered media. We derive exact expressions for the averaged two-point density correlation functions in the presence of weak, correlated disorder.

  • Received 2 August 1993

DOI:

Authors & Affiliations

Gunter Schütz and Sven Sandow

  • Department of Physics, Weizmann Institute, Rehovot 76100, Israel
  • Department of Electronics, Weizmann Institute, Rehovot 76100, Israel

References (Subscription Required)

Issue

Vol. 49, Iss. 4 — April 1994

Reuse & Permissions
Access Options
International Year Of Light
The Physical Review Journals Celebrate the International Year of Light

The editors of the Physical Review journals revisit papers that represent important breakthroughs in the field of optics. The articles covered are free to read throughout 2015. Read more.

Authorization Required


×
×

Images

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×